- 集合与常用逻辑用语
- 函数与导数
- 利用导数研究函数的单调性
- 利用导数研究函数的极值
- + 利用导数研究函数的最值
- 函数最值与极值的关系辨析
- 由导数求函数的最值
- 已知函数最值求参数
- 函数单调性、极值与最值的综合应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
(其中
为常数,
).(Ⅰ)求函数
的单调区间;(Ⅱ)当
时,是否存在实数
,使得当
时,不等式
恒成立?如果存在,求
的取值范围;如果不存在,请说明理由(其中
是自然对数的底数,
).











已知函数f(x)是偶函数,且x≤0时,f(x)=
-
(其中e为自然对数的底数).
(Ⅰ)比较f(2)与f(-3)大小;
(Ⅱ)设g(x)=2(1-3a)ex+2a+
(其中x>0,a∈R),若函数f(x)的图象与函数g(x)的图象有且仅有一个公共点,求实数a的取值范围.


(Ⅰ)比较f(2)与f(-3)大小;
(Ⅱ)设g(x)=2(1-3a)ex+2a+
