- 集合与常用逻辑用语
- 函数与导数
- 用导数判断或证明已知函数的单调性
- 利用导数求函数的单调区间
- 由函数的单调区间求参数
- + 由函数在区间上的单调性求参数
- 函数与导函数图象之间的关系
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
的定义域为(0,+
),若
在(0,+
)上为增函数,则称
为“一阶比增函数”;若
在(0,+
)上为增函数,则称
为”二阶比增函数”.我们把所有“一阶比增函数”组成的集合记为
1,所有“二阶比增函数”组成的集合记为
2.
(1)已知函数
,若
∈
1,求实数
的取值范围,并证明你的结论;
(2)已知0<a<b<c,
∈
1且
的部分函数值由下表给出:
求证:
;
(3)定义集合
,且存在常数k,使得任取x∈(0,+
),
<k},请问:是否存在常数M,使得任意的
∈
,任意的x∈(0,+
),有
<M成立?若存在,求出M的最小值;若不存在,说明理由.










(1)已知函数




(2)已知0<a<b<c,



![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | t | 4 |
求证:

(3)定义集合







已知函数
,其中a,
.
当
时,若
在
处取得极小值,求a的值;
当
时.
若函数
在区间
上单调递增,求b的取值范围;
若存在实数
,使得
,求b的取值范围.













