- 集合与常用逻辑用语
- 函数与导数
- + 用导数判断或证明已知函数的单调性
- 利用导数求函数的单调区间
- 由函数的单调区间求参数
- 由函数在区间上的单调性求参数
- 函数与导函数图象之间的关系
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知定义是
上的偶函数
在
上递增,记函数
,对于如下两个命题:①存在函数
,使函数
在
上递增;②存在函数
,使函数
在
上递减.下列判断正确的是( )










A.①与②均为真命题 | B.①与②均为假命题 |
C.①为真命题,②为假命题 | D.①为假命题,②为真命题 |
已知函数
有两个不同零点
.设函数
的定义域为
,且
的最大值记为
,最小值记为
.
(1)求
(用
表示);
(2)当
时,试问以
为长度的线段能否构成一个三角形,如果不一定,进一步求出
的取值范围,使它们能构成一个三角形;
(3)求
和
.







(1)求


(2)当



(3)求


已知
为定义在R上的可导函数,
为其导函数,且
,
=2019,则不等式
(其中e为自然对数的底数)的解集为( )





A.(0.+∞) | B.(-∞,0)∪(0,+∞) | C.(2019,+∞) | D.(-∞,0)∪(2019,+∞) |