- 集合与常用逻辑用语
- 函数与导数
- 导数的概念和几何意义
- 导数的计算
- + 导数在研究函数中的作用
- 利用导数研究函数的单调性
- 利用导数研究函数的极值
- 利用导数研究函数的最值
- 导数的综合应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设函数
.
(1)若x=
时,
取得极值,求
的值;
(2)若
在其定义域内为增函数,求
的取值范围;
(3)设
,当
=-1时,证明
在其定义域内恒成立,并证明
(
).

(1)若x=



(2)若


(3)设





(本小题满分12分)
已知函数
(
且
,
)恰有一个极大值点和一个极小值点,其中一个是
.
(Ⅰ)求函数
的另一个极值点;
(Ⅱ)求函数
的极大值
和极小值
,并求
时
的取值范围.
已知函数





(Ⅰ)求函数

(Ⅱ)求函数




