- 集合与常用逻辑用语
- 函数与导数
- 导数的概念和几何意义
- 导数的计算
- + 导数在研究函数中的作用
- 利用导数研究函数的单调性
- 利用导数研究函数的极值
- 利用导数研究函数的最值
- 导数的综合应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
定义在
上的函数
,如果满足:对任意
,存在常数
,都有
成立,则称
是
上的有界函数,其中
称为函数
的上界.
(1)设
,判断
在
上是否为有界函数,若是,请说明理由,并写出
的所有上界
的集合;若不是,也请说明理由;
(2)若函数
在
上是以
为上界的有界函数,求实数
的取值范围.









(1)设





(2)若函数




已知
(
)
(1)若方程
有3个不同的根,求实数
的取值范围;
(2)在(1)的条件下,是否存在实数
,使得
在
上恰有两个极值点
,且满足
,若存在,求实数
的值,若不存在,说明理由.


(1)若方程


(2)在(1)的条件下,是否存在实数






设直线y=t与曲线C:y=x(x﹣3)2的三个交点分别为A(a,t),B(b,t),C(c,t),且a<b<c.现给出如下结论:
①abc的取值范围是(0,4);②a2+b2+c2为定值;③c﹣a有最小值无最大值.其中正确结论的个数为( )
①abc的取值范围是(0,4);②a2+b2+c2为定值;③c﹣a有最小值无最大值.其中正确结论的个数为( )
A.0 | B.1 | C.2 | D.3 |
已知函数
在
处取得极值.
(1)求实数
的值;
(2)若关于
的方程
在区间
上恰有两个不同的实数根,求实数
的取值范围;
(3)证明:对任意的正整数
,不等式
都成立.


(1)求实数

(2)若关于




(3)证明:对任意的正整数

