刷题首页
题库
高中数学
题干
定义在
上的函数
,如果满足:对任意
,存在常数
,都有
成立,则称
是
上的有界函数,其中
称为函数
的上界.
(1)设
,判断
在
上是否为有界函数,若是,请说明理由,并写出
的所有上界
的集合;若不是,也请说明理由;
(2)若函数
在
上是以
为上界的有界函数,求实数
的取值范围.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-07 03:39:52
答案(点此获取答案解析)
同类题1
已知函数
.
(1)求
的单调区间;
(2)当
时,
,求
的取值范围.
同类题2
函数
(
为自然对数的底数)在区间0,1上的最大值是( )
A.
B.1
C.
D.
同类题3
设
是由满足下列条件的函数
构成的集合:①方程
有实数根;②函数
的导数
满足
.
(I) 若函数
为集合
中的任意一个元素,证明:方程
只有一个实数根;
(II) 判断函数
是否是集合
中的元素,并说明理由;
(III) 设函数
为集合
中的任意一个元素,对于定义域中任意
,当
且
时,证明:
.
同类题4
设偶函数
满足
,且当
时,
,则
在
上的单调性为( )
A.递增
B.递减
C.先增后减
D.先减后增
同类题5
设函数
,其中
为自然对数的底数.
(1)当
时,判断函数
的单调性;
(2)若直线
是函数
的切线,求实数
的值;
(3)当
时,证明:
.
相关知识点
函数与导数
导数及其应用
导数在研究函数中的作用
利用导数研究函数的单调性
用导数判断或证明已知函数的单调性
由导数求函数的最值