- 集合与常用逻辑用语
- 函数与导数
- + 导数的概念和几何意义
- 平均变化率
- 导数的几何意义
- 导数的计算
- 导数在研究函数中的作用
- 导数的综合应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(本小题满分12分)
已知函数f(x)=lnx-
,其中a为常数,且a>0.
(1)若曲线y=f(x)在点(1,f(1))处的切线与直线y=x+1垂直,求函数f(x)的单调递减区间;
(2)若函数f(x)在区间[1,3]上的最小值为
,求a的值.
已知函数f(x)=lnx-

(1)若曲线y=f(x)在点(1,f(1))处的切线与直线y=x+1垂直,求函数f(x)的单调递减区间;
(2)若函数f(x)在区间[1,3]上的最小值为

(本小题满分12分)已知函数
(其中
是实数).
(Ⅰ)求
的单调区间;
(Ⅱ)若设
,且
有两个极值点
,
(
),求
的取值范围.(其中
为自然对数的底数,
).


(Ⅰ)求

(Ⅱ)若设







