- 集合与常用逻辑用语
- 函数与导数
- + 导数的概念和几何意义
- 平均变化率
- 导数的几何意义
- 导数的计算
- 导数在研究函数中的作用
- 导数的综合应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设
,
.已知函数
,
.
(Ⅰ)求
的单调区间;
(Ⅱ)已知函数
和
的图象在公共点(x0,y0)处有相同的切线,
(i)求证:
在
处的导数等于0;
(ii)若关于x的不等式
在区间
上恒成立,求b的取值范围.




(Ⅰ)求

(Ⅱ)已知函数


(i)求证:


(ii)若关于x的不等式


已知函数
.
(1)若
,求曲线
在点
处的切线;
(2)若函数
在其定义域内为增函数,求正实数
的取值范围;
(3)设函数
,若在
上至少存在一点
,使得
成立,求实数
的取值范围.

(1)若



(2)若函数


(3)设函数





已知函数f(x)=x2-3x+lnx.
(Ⅰ)求函数f(x)的极值;
(Ⅱ)若对于任意的x1,x2∈(1,+∞),x1≠x2,都有
恒成立,求实数k的取值范围.
(Ⅰ)求函数f(x)的极值;
(Ⅱ)若对于任意的x1,x2∈(1,+∞),x1≠x2,都有
