- 集合与常用逻辑用语
- 函数与导数
- + 导数的概念和几何意义
- 平均变化率
- 导数的几何意义
- 导数的计算
- 导数在研究函数中的作用
- 导数的综合应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
,
(
、
为常数).
(Ⅰ)求函数
在点
处的切线方程;
(Ⅱ)当函数
在
处取得极值
,求函数
的解析式;
(Ⅲ)当
时,设
,若函数
在定义域上存在单调减区间,求实数
的取值范围.




(Ⅰ)求函数


(Ⅱ)当函数




(Ⅲ)当




已知函数
(
为常数,
是自然对数的底数),曲线
在点
处的切线与
轴平行.
(1)求
的值;
(2)求
的单调区间;
(3)设
,其中
为
的导函数.证明:对任意
,
.






(1)求

(2)求

(3)设




