- 集合与常用逻辑用语
- 函数与导数
- + 导数的概念和几何意义
- 平均变化率
- 导数的几何意义
- 导数的计算
- 导数在研究函数中的作用
- 导数的综合应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知对任意的实数
,直线
都不与曲线
相切.
(1)求实数
的取值范围;
(2)当
时,函数
的图象上是否存在一点
,使得点
到
轴的距离不小于
.试证明你的结论.



(1)求实数

(2)当






(2014秋•北京校级期中)已知函数f(x)=x2﹣(a+2)x+alnx(a为实常数).
(Ⅰ)若a=﹣2,求曲线 y=f(x)在x=1处的切线方程;
(Ⅱ)讨论函数f(x)在[1,e]上的单调性;
(Ⅲ)若存在x∈[1,e],使得f(x)≤0成立,求实数a的取值范围.
(Ⅰ)若a=﹣2,求曲线 y=f(x)在x=1处的切线方程;
(Ⅱ)讨论函数f(x)在[1,e]上的单调性;
(Ⅲ)若存在x∈[1,e],使得f(x)≤0成立,求实数a的取值范围.
(2013•高密市模拟)已知函数
,其中a>0.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若直线x﹣y﹣1=0是曲线y=f(x)的切线,求实数a的值;
(Ⅲ)设g(x)=xlnx﹣x2f(x),求g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)

(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若直线x﹣y﹣1=0是曲线y=f(x)的切线,求实数a的值;
(Ⅲ)设g(x)=xlnx﹣x2f(x),求g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)