- 集合与常用逻辑用语
- 函数与导数
- + 导数的概念和几何意义
- 平均变化率
- 导数的几何意义
- 导数的计算
- 导数在研究函数中的作用
- 导数的综合应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(本小题满分13分)已知函数
(
).
(1)若函数
在
处的切线与x轴平行,求a的值,并求出函数的极值;
(2)已知函数
,在(1)的条件下,若
恒成立,求b的取值范围.


(1)若函数


(2)已知函数


武汉炼油厂某分厂将原油精练为汽油,需对原油进行冷却和加热,如果第x小时时,原油温度(单位:
为
,那么,原油温度的瞬时变化率的最小值是()


A.8 | B.![]() | C.![]() | D.![]() |
已知函数
(1)若函数
在点
处的切线方程为
,求
的值;
(2)若
,函数
在区间
内有唯一零点,求
的取值范围;
(3)若对任意的
,均有
,求
的取值范围.

(1)若函数




(2)若




(3)若对任意的







A.(-2,0)∪(2,+∞) |
B.(-2,0)∪(0,2) |
C.(-∞,-2)∪(2,+∞) |
D.(-∞,-2)∪(0,2) |