- 集合与常用逻辑用语
- 函数与导数
- 利用二次函数模型解决实际问题
- + 分段函数模型的应用
- 分式型函数模型的应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
从装满
纯酒精的容器中倒出
酒精,然后用水加满,再倒出
酒精溶液,再用水加满,照这样的方法继续下去,如果倒第
次时共倒出纯酒精
,倒第
次时共倒出纯酒精
,则
的解析式是( )








A.![]() | B.![]() |
C.![]() | D.![]() |
某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数
,其中x(台)是仪器的月产量.
(1)将利润表示为月产量的函数
;
(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收益
总成本
利润)

(1)将利润表示为月产量的函数

(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收益


为减少空气污染,某市鼓励居民用电(减少粉尘),并采用分段计费的方法计算电费.当每个家庭月用电量不超过100千瓦时时,按每千瓦时0.57元计算;当月用电量超过100千瓦时时,其中的100千瓦时仍按原标准收费,超过的部分按每千瓦时0.5元计算.
(1)设月用电x千瓦时时,应交电费y元,写出y关于x的函数关系式;
(2)若某家庭一月份用电120千瓦时,则应交电费多少元?
(3)若某家庭第一季度缴纳电费的情况如下表:
则这个家庭第一季度共用电多少千瓦时?
(1)设月用电x千瓦时时,应交电费y元,写出y关于x的函数关系式;
(2)若某家庭一月份用电120千瓦时,则应交电费多少元?
(3)若某家庭第一季度缴纳电费的情况如下表:
月份 | 1月 | 2月 | 3月 | 合计 |
交费金额(元) | 76 | 63 | 45.6 | 184.6 |
则这个家庭第一季度共用电多少千瓦时?
大气温度
随着距地面的高度x(km)的增加而降低,到高空11km处为止,在更高的上空气温几乎不变,设地面温度为
,每上升1km大气温度大约降低
,则y与x的函数关系式为________.



已知甲、乙两地相距
,某人开汽车以
的速度从甲地到达乙地,在乙地停留一小时后再以
的速度返回甲地,把汽车距甲地的距离
表示为时间
的函数,则此函数的表达式为__________.





现行的个税法修正案规定:个税免征额由原来的2000元提高到3500元,并给出了新的个人所得税税率表:
例如某人的月工资收入为5000元,那么他应纳个人所得税为:
(元).
(Ⅰ)若甲的月工资收入为6000元,求甲应纳的个人收的税;
(Ⅱ)设乙的月工资收入为
元,应纳个人所得税为
元,求
关于
的函数;
(Ⅲ)若丙某月应纳的个人所得税为1000元,给出丙的月工资收入.(结论不要求证明)
全月应纳税所得额 | 税率 |
不超过1500元的部分 | 3% |
超过1500元至4500元的部分 | 10% |
超过4500元至9000元的部分 | 20% |
超过9000元至35000元的部分 | 25% |
…… | … |
例如某人的月工资收入为5000元,那么他应纳个人所得税为:

(Ⅰ)若甲的月工资收入为6000元,求甲应纳的个人收的税;
(Ⅱ)设乙的月工资收入为




(Ⅲ)若丙某月应纳的个人所得税为1000元,给出丙的月工资收入.(结论不要求证明)
设甲地某时刻距地面x(km)处的气温为y(℃),在距地面11 km内,y随x的增加而降低,且每升高1 km,气温降低6 ℃;高度超过11 km时,气温可视为不变.设地面温度为22 ℃,试写出y=f(x)的表达式,并画出函数图像.
某单位“五一”期间组团包机去上海旅游,其中旅行社的包机费为30 000元,旅游团中的每人的飞机票按以下方式与旅行社结算:若旅游团中的人数在30或30以下,飞机票每张收费1 800元.若旅游团的人数多于30人,则给以优惠,每多1人,机票费每张减少20元,但旅游团的人数最多有75人,那么旅游团的人数为_______人时,旅行社获得的利润最大.
根据市场调查,某种商品在最近的40天内的价格
与时间
满足关系
,销售量
与时间
满足关系
则这种商品的日销售额(销售量与价格之积)的最大值为______.








如图所示,液体从一个圆锥形漏斗漏入一个圆柱形桶中,开始时漏斗中盛满液体,经过3秒漏完,圆柱形桶中液面上升速度是一个常量,则漏斗中液面下降的高度H与下降时间t之间的函数关系的图象只可能是( )


A.![]() | B.![]() | C.![]() | D.![]() |