某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族中的成员仅以自驾或公交方式通勤.分析显示:当)的成员自驾时,自驾群体的人均通勤时间为(单位:分钟),而公交群体的人均通勤时间不受影响,恒为分钟,试根据上述分析结果回答下列问题:
(1)当在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?
(2)求该地上班族的人均通勤时间的表达式;讨论的单调性,并说明其实际意义.
当前题号:1 | 题型:解答题 | 难度:0.99
2019年,随着中国第一款5G手机投入市场,5G技术已经进入高速发展阶段.已知某5G手机生产厂家通过数据分析,得到如下规律:每生产手机万台,其总成本为,其中固定成本为800万元,并且每生产1万台的生产成本为1000万元(总成本=固定成本+生产成本),销售收入万元满足
(1)将利润表示为产量万台的函数;
(2)当产量为何值时,公司所获利润最大?最大利润为多少万元?
当前题号:2 | 题型:解答题 | 难度:0.99
某电器专卖店销售某种型号的空调,记第天()的日销售量为(单位;台).函数图象中的点分别在两条直线上,如图,该两直线交点的横坐标为,已知时,函数

(1)当时,求函数的解析式;
(2)求的值及该店前天此型号空调的销售总量;
(3)按照经验判断,当该店此型号空调的销售总量达到或超过台,且日销售量仍持续增加时,该型号空调开始旺销,问该店此型号空调销售到第几天时,才可被认为开始旺销?
当前题号:3 | 题型:解答题 | 难度:0.99
已知AB两地相距24km.甲车、乙车先后从A地出发匀速驶向B地.甲车从A地到B地需行驶25min;乙车从A地到B地需行驶20min.乙车比甲车晚出发2min.
(1)分别写出甲、乙两车所行路程关于甲车行驶时间的函数关系式;
(2)甲、乙两车何时在途中相遇?相遇时距A地多远?
当前题号:4 | 题型:解答题 | 难度:0.99
攀枝花是一座资源富集的城市,矿产资源储量巨大,已发现矿种76种,探明储量39种,其中钒、钛资源储量分别占全国的63%和93%,占全球的11%和35%,因此其素有“钒钛之都”的美称.攀枝花市某科研单位在研发钛合金产品的过程中发现了一种新合金材料,由大数据测得该产品的性能指标值yy值越大产品的性能越好)与这种新合金材料的含量x(单位:克)的关系为:当0≤x<7时,yx的二次函数;当x≥7时,.测得部分数据如表:

(1)求y关于x的函数关系式yfx);
(2)求该新合金材料的含量x为何值时产品的性能达到最佳.
当前题号:5 | 题型:解答题 | 难度:0.99
某快递公司在某市的货物转运中心,拟引进智能机器人分拣系统,以提高分拣效率和降低物流成本,已知购买x台机器人的总成本为万元.

(1)若使每台机器人的平均成本最低,问应买多少台?
(2)现按(1)中的数量购买机器人,需要安排m人将邮件放在机器人上,机器人将邮件送达指定落袋格口完成分拣(如图).经实验知,每台机器人的日平均分拣量为,(单位:件).已知传统的人工分拣每人每日的平均分拣量为1200件,问引进机器人后,日平均分拣量达最大时,用人数量比引进机器人前的用人数量最多可减少百分之几?
当前题号:6 | 题型:解答题 | 难度:0.99
在国庆期间,某商场进行优惠大酬宾活动,在活动期间,商场内所有商品按标价的80%出售;同时,当顾客在该商场内消费满一定金额(元)后,还可按如下方案获得相应金额(元)的奖券:根据上述优惠方案,顾客在该商场购物可以获得双重优惠例如,购买标价为300元的商品,则消费金额为240元,获得的优惠额为:(元).设购买商品得到的,试问:
(1)购买一件标价为800元的商品,顾客得到的优惠率是多少?
(2)对于标价在(元)内的商品,要使顾客购买某商品获得30%的优惠率,则该商品的标价是多少?
当前题号:7 | 题型:解答题 | 难度:0.99
某餐厅经营盒饭生意,每天的房租、人员工资等固定成本为200元,每盒盒饭的成本为15元,销售单价与日均销售量的关系如下表

根据以上数据,当这个餐厅每盒盒饭定价______元时,利润最大
A.16.5B.19.5C.21.5D.22
当前题号:8 | 题型:单选题 | 难度:0.99
信息科技的进步和互联网商业模式的兴起,全方位地改变了大家金融消费的习惯和金融交易模式,现在银行的大部分业务都可以通过智能终端设备完成,多家银行职员人数在悄然减少.某银行现有职员320人,平均每人每年可创利20万元.据评估,在经营条件不变的前提下,每裁员1人,则留岗职员每人每年多创利0.2万元,但银行需付下岗职员每人每年6万元的生活费,并且该银行正常运转所需人数不得小于现有职员的,为使裁员后获得的经济效益最大,该银行应裁员多少人?此时银行所获得的最大经济效益是多少万元?
当前题号:9 | 题型:解答题 | 难度:0.99
为响应市政府提出的以新旧动能转换为主题的发展战略,某公司花费100万元成本购买了1套新设备用于扩大生产,预计该设备每年收入100万元,第一年该设备的各种消耗成本为8万元,且从第二年开始每年比上一年消耗成本增加8万元.
(1)求该设备使用x年的总利润y(万元)与使用年数xx∈N*)的函数关系式(总利润=总收入﹣总成本);
(2)这套设备使用多少年,可使年平均利润最大?并求出年平均利润的最大值.
当前题号:10 | 题型:解答题 | 难度:0.99