- 集合与常用逻辑用语
- 函数与导数
- 函数与方程
- + 函数模型及其应用
- 几类不同增长的函数模型
- 常见的函数模型(1)——二次、分段函数
- 常见的函数模型(2)——指数、对数、幂函数
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某通讯公司需要在三角形地带
区域内建造甲、乙两种通信信号加强中转站,甲中转站建在区域
内,乙中转站建在区域
内.分界线
固定,且
=
百米,边界线
始终过点
,边界线
满足
.
设
(
)百米,
百米.

(1)试将
表示成
的函数,并求出函数
的解析式;
(2)当
取何值时?整个中转站的占地面积
最小,并求出其面积的最小值.










设




(1)试将



(2)当


如图,O为数轴的原点,A,B,M为数轴上三点,C为线段OM上的动点,设x表示C与原点的距离,y表示C到A距离4倍与C道B距离的6倍的和.
(1)将y表示成x的函数;
(2)要使y的值不超过70,x应该在什么范围内取值?

(1)将y表示成x的函数;
(2)要使y的值不超过70,x应该在什么范围内取值?

某工厂生产某种产品固定成本为2000万元,并且每生产一单位产品,成本增加10万元,又知总收入k是单位产品数Q的函数,
,则总利润
的最大值是________


某汽车运输公司购买了一批豪华大客车投入客运,据市场分析,每辆客车营运的总利润y万元与营运年数x(x∈N)的关系为y=-x2+12x-25,则每辆客车营运多少年报废可使其营运年平均利润最大( )
A.2 | B.4 | C.5 | D.6 |
某厂生产一种仪器,由于受生产能力和技术水平的限制,会产生一些次品.根据经验知道,该厂生产这种仪器,次品率







(1)试将生产这种仪器每天的盈利额


(2)当日产量

某医院为了提高服务质量,对病员挂号进行了调查,其调查结果为:当还未开始挂号时,有N个人已经在排队等候挂号;开始挂号后,排队的人数平均每分钟增加M人。假定挂号的速度是每窗口每分钟K个人,当开放一个窗口时,40分钟后恰好不会出现排队现象;若同时开放两个窗口时,则15分钟分恰好不会出现排队现象。根据以下信息,若医院承诺5分钟后不出现排队现象,则至少需要同时开放的窗口数为___.
有一批材料可以建成200 m的围墙,如果用此材料 在一边靠墙的地方围成一块矩形场地,中间用同样的材料隔成三个面积相等的矩形(如图所示),求围成的矩形最大面积.(围墙厚度不计)
