- 集合与常用逻辑用语
- 函数与导数
- 函数与方程
- + 函数模型及其应用
- 几类不同增长的函数模型
- 常见的函数模型(1)——二次、分段函数
- 常见的函数模型(2)——指数、对数、幂函数
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(本题满分12分)
美国华尔街的次贷危机引起的金融风暴席卷全球,低迷的市场造成产品销售越来越难,为此某厂家举行大型的促销活动,经测算该产品的销售量P万件(生产量与销售量相等)与促销费用
万元满足
,已知生产该产品还需投入成本
万元(不含促销费用),每件产品的销售价格定为
元.
(Ⅰ)将该产品的利润
万元表示为促销费用
万元的函数(利润=总售价-成本-促销费);
(Ⅱ)促销费用投入多少万元时,厂家的利润最大.
美国华尔街的次贷危机引起的金融风暴席卷全球,低迷的市场造成产品销售越来越难,为此某厂家举行大型的促销活动,经测算该产品的销售量P万件(生产量与销售量相等)与促销费用




(Ⅰ)将该产品的利润


(Ⅱ)促销费用投入多少万元时,厂家的利润最大.
某跳水运动员在一次跳水训练时的跳水曲线为如图所示的抛物线一段,已知跳水板
长为2m,跳水板距水面
的高
为3m,
=5m,
=6m,为安全和空中姿态优美,训练时跳水曲线应在离起跳点
m(
)时达到距水面最大高度4m,规定:以
为横轴,
为纵轴建立直角坐标系.

(1)当
=1时,求跳水曲线所在的抛物线方程;
(2)若跳水运动员在区域
内入水时才能达到压水花的训练要求,求达到压水花的训练要求时
的取值范围.










(1)当

(2)若跳水运动员在区域


某商店投入38万元经销某种纪念品,经销时间共60天,为了获得更多的利润,商店将每天获得的利润投入到次日的经营中,市场调研表明,该商店在经销这一产品期间第
天的利润
(单位:万元,
),记第
天的利润率
,例如
(1).求
的值;
(2).求第
天的利润率
;
(3).该商店在经销此纪品期间,哪一天的利润率最大?并求该天的利润率.






(1).求

(2).求第


(3).该商店在经销此纪品期间,哪一天的利润率最大?并求该天的利润率.
设a为实数,设函数
的最大值为g(a).
(Ⅰ)设t=
,求t的取值范围,并把f(x)表示为t的函数m(t)
(Ⅱ)求g(a)
(Ⅲ)试求满足
的所有实数a

(Ⅰ)设t=

(Ⅱ)求g(a)
(Ⅲ)试求满足

有一座大桥既是交通拥挤地段,又是事故多发地段,为了保证安全,交通部门规定.大桥上的车距
与车速
和车长
的关系满足:
(
为正的常数),假定车身长为
,当车速为
时,车距为2.66个车身长.
写出车距
关于车速
的函数关系式;
应规定怎样的车速,才能使大桥上每小时通过的车辆最多?







写出车距


应规定怎样的车速,才能使大桥上每小时通过的车辆最多?