已知函数 .
当前题号:1 | 题型:填空题 | 难度:0.99
将边长为的一块正方形铁皮的四角各截去一个大小相同的小正方形,然后将四边折起做成一个无盖的方盒.欲使所得的方盒有最大容积,截去的小正方形的边长应为多少?方盒的最大容积为多少?
当前题号:2 | 题型:解答题 | 难度:0.99
已知函数,则满足的取值范围是______.
当前题号:3 | 题型:填空题 | 难度:0.99
的值等于    
当前题号:4 | 题型:填空题 | 难度:0.99
某单位设计的两种密封玻璃窗如图所示:图1是单层玻璃,厚度为8 mm;图2是双层中空玻璃,厚度均为4 mm,中间留有厚度为的空气隔层.根据热传导知识,对于厚度为的均匀介质,两侧的温度差为,单位时间内,在单位面积上通过的热量,其中为热传导系数.假定单位时间内,在单位面积上通过每一层玻璃及空气隔层的热量相等.(注:玻璃的热传导系数为,空气的热传导系数为.)
(1)设室内,室外温度均分别为,内层玻璃外侧温度为,外层玻璃内侧温度为,且.试分别求出单层玻璃和双层中空玻璃单位时间内,在单位面积上通过的热量(结果用表示);
(2)为使双层中空玻璃单位时间内,在单位面积上通过的热量只有单层玻璃的4%,应如何设计的大小?
当前题号:5 | 题型:解答题 | 难度:0.99
已知函数,则函数的零点个数()
A.4B.3C.2D.1
当前题号:6 | 题型:单选题 | 难度:0.99

某创业投资公司拟投资开发某种新能源产品,估计能获得10万元~1000万元的投资收
益.现准备制定一个对科研课题组的奖励方案:奖金y(单位:万元)随投资收益x(单
位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%.现
有两个奖励方案的函数模型:(1);(2).试问这两个函数模
型是否符合该公司要求,并说明理由.
当前题号:7 | 题型:解答题 | 难度:0.99
某水域一艘装载浓硫酸的货船发生侧翻,导致浓硫酸泄漏,对河水造成了污染.为减少对环境的影响,环保部门迅速反应,及时向污染河道投入固体碱,个单位的固体碱在水中逐渐溶化,水中的碱浓度与时间(小时)的关系可近似地表示为:,只有当污染河道水中碱的浓度不低于时,才能对污染产生有效的抑制作用.
(Ⅰ) 如果只投放1个单位的固体碱,则能够维持有效的抑制作用的时间有多长?
(Ⅱ) 第一次投放1单位固体碱后,当污染河道水中的碱浓度减少到时,马上再投放1个单位的固体碱,设第二次投放后水中碱浓度为,求的函数式及水中碱浓度的最大值.(此时水中碱浓度为两次投放的浓度的累加)
当前题号:8 | 题型:解答题 | 难度:0.99
如果函数f(x)的定义域为,且f(x)为增函数,f(xy)=f(x)+f(y)。
(1)证明:
(2)已知f(3)=1,且f(a)>f(a-1)+2,求a的取值范围。
当前题号:9 | 题型:解答题 | 难度:0.99
作为绍兴市2013年5.1劳动节系列活动之一的花卉展在镜湖湿地公园举行.现有一占地1800平方米的矩形地块,中间三个矩形设计为花圃(如图),种植有不同品种的观赏花卉,周围则均是宽为1米的赏花小径,设花圃占地面积为平方米,矩形一边的长为米(如图所示)

(1)试将表示为的函数;
(2)问应该如何设计矩形地块的边长,使花圃占地面积取得最大值.
当前题号:10 | 题型:解答题 | 难度:0.99