- 集合与常用逻辑用语
- 函数与导数
- 函数与方程
- + 函数模型及其应用
- 几类不同增长的函数模型
- 常见的函数模型(1)——二次、分段函数
- 常见的函数模型(2)——指数、对数、幂函数
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图所示,一种医用输液瓶可以视为两个圆柱的组合体.开始输液时,滴管内匀速滴下球状液体,其中球状液体的半径
毫米,滴管内液体忽略不计.

(1)如果瓶内的药液恰好
分钟滴完,问每分钟应滴下多少滴?
(2)在条件(1)下,设输液开始后
(单位:分钟),瓶内液面与进气管的距离为
(单位:厘米),已知当
时,
.试将
表示为
的函数.(注:
)


(1)如果瓶内的药液恰好

(2)在条件(1)下,设输液开始后







(本题满分14分)某工厂生产某种产品,已知该产品的月生产量
(吨)与每吨产品的价格
(元/吨)之间的关系式为:
,且生产x吨的成本为
(元).问该厂每月生产多少吨产品才能使利润达到最大?最大利润是多少?




某同学为了研究函数
的性质,构造了如图所示的两个边长为
的正方形
和
,点
是边
上的一个动点,设
,则
.那么可推知方程
解的个数是()











A.![]() | B.![]() | C.![]() | D.![]() |
如图,金砂公园有一块边长为2的等边△ABC的边角地,现修成草坪,图中DE把草坪分成面积相等的两部分,D在AB上,E在AC上.
(Ⅰ)设AD=
,DE=
,求
关于
的函数关系式;
(Ⅱ)如果DE是灌溉水管,我们希望它最短,则DE的位置应在哪里?
请予以证明.
(Ⅰ)设AD=




(Ⅱ)如果DE是灌溉水管,我们希望它最短,则DE的位置应在哪里?
请予以证明.

如图,有一块半椭圆形钢板,其长半轴为
,短半轴为
,计划将此钢板切割成等腰梯形的形状,下底
是半椭圆的短轴,上底
的端点在椭圆上,记
,梯形面积为
.

(Ⅰ)求面积
关于变量
的函数表达式,并写出定义域;
(Ⅱ)求面积
的最大值.







(Ⅰ)求面积


(Ⅱ)求面积

近年来,太阳能技术运用的步伐日益加快,已知2002年全球太阳能电池年生产量为670兆瓦,年增长率为34%.在此后的四年里,增长率以每年2%的速度增长(例如2003年的年生产量增长率为36%)
(1)求2006年的太阳能电池年生产量(精确到0.1兆瓦)
(2)已知2006年太阳能电池年安装量为1420兆瓦,在此后的4年里年生产量保持42%的增长率,若2010年的年安装量不少于年生产量的95%,求4年内年安装量的增长率的最小值(精确到0.1%)
(1)求2006年的太阳能电池年生产量(精确到0.1兆瓦)
(2)已知2006年太阳能电池年安装量为1420兆瓦,在此后的4年里年生产量保持42%的增长率,若2010年的年安装量不少于年生产量的95%,求4年内年安装量的增长率的最小值(精确到0.1%)