- 集合与常用逻辑用语
- 函数与导数
- 函数与方程
- + 函数模型及其应用
- 几类不同增长的函数模型
- 常见的函数模型(1)——二次、分段函数
- 常见的函数模型(2)——指数、对数、幂函数
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某工厂修建一个长方体无盖蓄水池,其容积为4 800立方米,深度为3米.池底每平方米的造价为150元,池壁每平方米的造价为120元.设池底长方形长为x米.
(1)求底面积,并用含x的表达式表示池壁面积;
(2)怎样设计水池能使总造价最低?最低造价是多少?
(1)求底面积,并用含x的表达式表示池壁面积;
(2)怎样设计水池能使总造价最低?最低造价是多少?
小菲在学校选修课中了解到艾宾浩斯记忆曲线,为了解自己记忆一组单词的情况,她记录了随后一个月的有关数据,绘制散点图,拟合了记忆保持量与时间(天)之间的函数关系:

某同学根据小菲拟合后的信息得到以下结论:
①随着时间的增加,小菲的单词记忆保持量降低;
②9天后,小菲的单词记忆保持量低于40%;
③26天后,小菲的单词记忆保持量不足20%.
其中正确的结论序号有______.(注:请写出所有正确结论的序号)


某同学根据小菲拟合后的信息得到以下结论:
①随着时间的增加,小菲的单词记忆保持量降低;
②9天后,小菲的单词记忆保持量低于40%;
③26天后,小菲的单词记忆保持量不足20%.
其中正确的结论序号有______.(注:请写出所有正确结论的序号)
如图是某设计师设计的
型饰品的平面图,其中支架
,
,
两两成
,
,
,且
.现设计师在支架
上装点普通珠宝,普通珠宝的价值为
,且
与
长成正比,比例系数为
(
为正常数);在
区域(阴影区域)内镶嵌名贵珠宝,名贵珠宝的价值为
,且
与
的面积成正比,比例系数为
.设
,
.

(1)求
关于
的函数解析式,并写出
的取值范围;
(2)求
的最大值及相应的
的值.






















(1)求



(2)求


某小型机械厂有工人共
名,工人年薪4万元/人,据悉该厂每年生产
台机器,除工人工资外,还需投入成本为
(万元),
且每台机器售价为
万元.通过市场分析,该厂生产的机器能全部售完.
(1)写出年利润
(万元)关于年产量
的函数解析式;
(2)问:年产量为多少台时,该厂所获利润最大?





(1)写出年利润


(2)问:年产量为多少台时,该厂所获利润最大?
某公司租地建仓库,每月土地占用费
(万元)与仓库到车站的距离(公里)成反比.而每月库存货物的运费
(万元)与仓库到车站的距离(公里)成正比.如果在距车站
公里处建仓库,这两项费用
和
分别为
万元和
万元,由于地理位置原因.仓库距离车站不超过
公里.那么要使这两项费用之和最小,最少的费用为_____万元.








2016年9月15日,天宫二号实验室发射成功.借天宫二号东风,某厂推出品牌为“玉兔”的新产品.生产“玉兔”的固定成本为20000元,每生产一件“玉兔”需要增加投入100元.根据初步测算,总收益(单位:元)满足分段函数
,其中
,
是“玉兔”的月产量(单位:件),总收益=总成本+利润.
(I)试将利润
元表示为月产量
的函数;
(II)当月产量为多少件时利润最大?最大利润是多少?



(I)试将利润


(II)当月产量为多少件时利润最大?最大利润是多少?
一个车辆制造厂引进了一条摩托车整车装配流水线,这条流水线生产的摩托车数量
(辆)与创造的价值
(元)之间满足二次函数关系。已知产量为
时,创造的价值也为0;当产量为55辆时,创造的价值达到最大6050元。若这家工厂希望利用这条流水线创收达到6000元及以上,则它应该生产的摩托车数量至少是 _____________ ;



某公司市场营销人员的个人月收入与其每月的销售量成一次函数关系,其图象如下图所示,由图中给出的信息可知,营销人员没有销售量时的收入是( )


A.3100元 | B.3000元 | C.2900元 | D.2800元 |
已知甲、乙两地相距150km,某人开汽车以60km/h的速度从甲地到达乙地,在乙地停留1小时后再以50km/h的速度返回甲地,把汽车离开甲地的距离s表示为时间t(从甲地出发时开始)的函数,求此函数表达式.