刷题首页
题库
高中数学
题干
2016年9月15日,天宫二号实验室发射成功.借天宫二号东风,某厂推出品牌为“玉兔”的新产品.生产“玉兔”的固定成本为20000元,每生产一件“玉兔”需要增加投入100元.根据初步测算,总收益(单位:元)满足分段函数
,其中
,
是“玉兔”的月产量(单位:件),总收益=总成本+利润.
(I)试将利润
元表示为月产量
的函数;
(II)当月产量为多少件时利润最大?最大利润是多少?
上一题
下一题
0.99难度 解答题 更新时间:2016-11-11 11:27:18
答案(点此获取答案解析)
同类题1
某商场将进价为2000元的冰箱以2400元售出,平均每天能售岀8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价
x
元,商场每天销售这种冰箱的利润是
y
元,请写出
y
与
x
之间的函数表达式;(不要求写自变量的取值范围)
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?
同类题2
经市场调查,某种商品在进价基础上每涨价1元,其销售量就减少10个,已知这种商品进价为40元/个,若按50元一个售出时能卖出500个.
(1)请写出售价
x
(
)元与利润
y
元之间的函数关系式;
(2)试计算当售价定为多少元时,获得的利润最大,并求出最大利润.
同类题3
某商店已按每件80元的成本购进某商品1 000件,根据市场预测,销售价为每件100元时可全部售完,定价每提高1元时销售量就减少5件,若要获得最大利润,销售价应定为每件________元.
同类题4
经市场调查,某门市部的一种小商品在过去的20天内的日销售量(件)与价格(元)均为时间
(天)的函数,且日销售量近似满足函数
(件),而且销售价格近似满足于
(元).
(1)试写出该种商品的日销售额
与时间
的分段函数表达式
;
(2)求该种商品的日销售额
的最大值.
同类题5
如图,要设计一张矩形广告牌,该广告牌含有大小相等的左右两个矩形栏目即图中阴影部分,这两栏的面积之和为
,四周空白的宽度为
,两栏之间的中缝空白的宽度为
,设广告牌的高为
.
(1)求广告牌的面积关于
的函数
;
(2)求广告牌的面积的最小值.
相关知识点
函数与导数
函数的应用
函数模型及其应用
常见的函数模型(1)——二次、分段函数
利用二次函数模型解决实际问题
分段函数模型的应用