- 集合与常用逻辑用语
- 函数与导数
- 函数与方程
- + 函数模型及其应用
- 几类不同增长的函数模型
- 常见的函数模型(1)——二次、分段函数
- 常见的函数模型(2)——指数、对数、幂函数
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,长途车站P与地铁站O的距离为
千米,从地铁站O出发有两条道路l1,l2,经测量,l1,l2的夹角为45°,OP与l1的夹角
满足tan
=
(其中0<θ<
),现要经过P修条直路分别与道路l1,l2交汇于A,B两点,并在A,B处设立公共自行车停放点.





(1)已知修建道路PA,PB的单位造价分别为2m元/千米和m元/千米,若两段道路的总造价相等,求此时点A,B之间的距离;
(2)考虑环境因素,需要对OA,OB段道路进行翻修,OA,OB段的翻修单价分别为n元/千米和n元/千米,要使两段道路的翻修总价最少,试确定A,B点的位置.
声音靠空气震动传播,靠耳膜震动被人感知.声音可以通过类似于图①和图②的波形曲线来描述,图①和图②是一位未成年女性和一位老年男性在说“我爱中国”四个字时的声波图,其中纵坐标表示音量(单位:50分贝),横坐标代表时间(单位:
秒).

声音的音调由其频率所决定,未成年女性的发声频率大约为老年男性发声频率的2倍.下面的图③和图④依次为上面图①和图②中相同读音处的截取的局部波形曲线,为了简便起见,在截取时局部音量和相位做了调整,使得二者音量相当,且横坐标从0开始.已知点
位于图④中波形曲线上.

③ ④
(Ⅰ)描述未成年女性声音的声波图是_____ ;(填写①或②)
(Ⅱ)请你选择适当的函数模型
来模仿图④中的波形曲线:
___________________________ (函数模型中的参数取值保留小数点后2位).


声音的音调由其频率所决定,未成年女性的发声频率大约为老年男性发声频率的2倍.下面的图③和图④依次为上面图①和图②中相同读音处的截取的局部波形曲线,为了简便起见,在截取时局部音量和相位做了调整,使得二者音量相当,且横坐标从0开始.已知点


③ ④
(Ⅰ)描述未成年女性声音的声波图是
(Ⅱ)请你选择适当的函数模型


据报道,青海湖水在最近50年内减少了10%,如果按此规律,设2013年的湖水量为m,从2013年起,过x年后湖水量y与x的函数关系是________ .
某商店计划投入资金20万元经销甲或乙两种商品,已知经销甲商品与乙商品所获得的利润分别为P(万元)和Q(万元),且它们与投入资金x(万元)的关系是:P=
,Q=
(a>0);若不管资金如何投放,经销这两种商品或其中的一种商品所获得的纯利润总不少于5万元,则a的最小值应为( )


A.![]() | B.5 |
C.±![]() | D.-![]() |
某创业公司2018年投入的科研资金为100万元,在此基础上,每年投入的科研资金比上一年增长20%,则该厂投入的科研资金开始超过200万元的年份是
A.2021年 | B.2022年 | C.2023年 | D.2024年 |
某化工厂生产一种溶液,按市场要求,杂质含量不能超过0.1%,若初时含杂质2%,每过滤一次可使杂质含量减少
,要使产品达到市场要求,则至少应过滤的次数为(已知:lg2=0.3010,lg3=0.4771)( )

A.8 | B.9 | C.10 | D.11 |
如图记录了一种叫万年松的树生长时间
(年)与树高
之间的散点图.请你据此判断,拟合这种树生长的年数与树高的关系式,选择的函数模型最好的是( )




A.![]() | B.![]() | C.![]() | D.![]() |
小婷经营一花店,每天的房租、水电等固定成本为100元,每束花的进价为6元,若日均销售量
(束)与销售单价
(元)的关系为
,则当该店每天获利最大时,每束花应定价为( )



A.15元 | B.13元 | C.11元 | D.10元 |