- 集合与常用逻辑用语
- 函数与导数
- 函数与方程
- + 函数模型及其应用
- 几类不同增长的函数模型
- 常见的函数模型(1)——二次、分段函数
- 常见的函数模型(2)——指数、对数、幂函数
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某太阳能热水器厂2007年的年生产量为670台,该年比上一年的年产量的增长率为34%. 从2008年开始,以后的四年中,年生产量的增长率逐年递增2%(如,2008年的年生产量的增长率为36%).
(1)求2008年该厂太阳能热水器的年生产量(结果精确到0.1台);
(2)求2011年该厂太阳能热水器的年生产量(结果精确到0.1台);
(3)如果2011年的太阳能热水器的实际安装量为1420台,假设以后若干年内太阳能热水器的年生产量的增长率保持在42%,到2015年,要使年安装量不少于年生产量的95%,这四年中太阳能热水器的年安装量的平均增长率至少应达到多少(结果精确到0.1%)?(参考数据:
,
,1.5634="5.968" ).
(1)求2008年该厂太阳能热水器的年生产量(结果精确到0.1台);
(2)求2011年该厂太阳能热水器的年生产量(结果精确到0.1台);
(3)如果2011年的太阳能热水器的实际安装量为1420台,假设以后若干年内太阳能热水器的年生产量的增长率保持在42%,到2015年,要使年安装量不少于年生产量的95%,这四年中太阳能热水器的年安装量的平均增长率至少应达到多少(结果精确到0.1%)?(参考数据:


某投资公司计划投资A,B两种金融产品,根据市场调查与预测,A产品的利润y1与投资金额x的函数关系为y1=18-
,B产品的利润y2与投资金额x的函数关系为y2=
(注:利润与投资金额单位:万元).
(1)该公司已有100万元资金,并全部投入A,B两种产品中,其中x万元资金投入A产品,试把A,B两种产品利润总和表示为x的函数,并写出定义域;
(2)在(1)的条件下,试问:怎样分配这100万元资金,才能使公司获得最大利润?其最大利润为多少万元?


(1)该公司已有100万元资金,并全部投入A,B两种产品中,其中x万元资金投入A产品,试把A,B两种产品利润总和表示为x的函数,并写出定义域;
(2)在(1)的条件下,试问:怎样分配这100万元资金,才能使公司获得最大利润?其最大利润为多少万元?
某企业去年销售收入1000万元,年成本为生产成本500万元与年广告成本200万元两部分.若年利润必须按
纳税,且年广告费超出年销售收入
的部分也按
纳税,其他不纳税.已知该企业去年共纳税120万元.求税率
.




某公司研究开发了一种新产品,生产这种新产品的年固定成本为150万元,每生产
千件,需另投入成本为
(万元),
.每件产品售价为500元.该新产品在市场上供不应求可全部卖完.
(Ⅰ)写出年利润
(万元)关于年产量
(千件)的函数解析式;
(Ⅱ)当年产量为多少千件时,该公司在这一新产品的生产中所获利润最大?



(Ⅰ)写出年利润


(Ⅱ)当年产量为多少千件时,该公司在这一新产品的生产中所获利润最大?
某食品厂定期收购面粉,已知该厂每天需要面粉6吨,每吨面粉的价格为1800元,面粉的保管等其他费用为平均每吨每天3元,购买面粉每次需支付运费900元.
(1)求该厂多少天购买一次面粉,才能使平均每天所支付的总费用最少?
(2)若提供面粉的公司规定:当一次购买面粉不少于210吨时,其价格可享受9折优惠(即原价的90%),问该厂是否考虑利用此优惠条件?请说明理由.
(1)求该厂多少天购买一次面粉,才能使平均每天所支付的总费用最少?
(2)若提供面粉的公司规定:当一次购买面粉不少于210吨时,其价格可享受9折优惠(即原价的90%),问该厂是否考虑利用此优惠条件?请说明理由.
如图,公路AM,AN围成一块顶角为α的角形耕地,其中tanα=-2,在该块土地中P处有一小型建筑,经测量,它到公路AM,AN的距离分别为3km,
km,现要过点P修建一条直线公路BC,将三条公路围成的区域ABC建成一个工业园,为尽量减少耕地占用,问如何确定B点的位置,使得该工业园区的面积最小?并求最小面积.


某产品进入商场销售,商场第一年免收管理费,因此第一年该产品定价为每件70元,年销售量为11.8万件,从第二年开始,商场对该产品征收销售额的
的管理费(即销售100元要征收
元),于是该产品定价每件比第一年增加了
元,预计年销售量减少
万件,要使第二年商场在该产品经营中收取的管理费不少于14万元,则
的最大值是( )





A.2 | B.6 | C.8.5 | D.10 |
某村计划建造一个室内面积为800平米的矩形蔬菜温室,在温室内沿左右两侧与后墙内侧各保留1米的通道,沿前侧内墙保留3米宽的空地,当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大的种植面积是多少?
