- 集合与常用逻辑用语
- 函数与导数
- 函数及其性质
- 一次函数与二次函数
- 指对幂函数
- + 函数的应用
- 函数与方程
- 函数模型及其应用
- 导数及其应用
- 定积分
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某市垃圾处理站每月的垃圾处理量最少为400吨,最多为600吨,月处理成本
(元)与月垃圾处理量
(吨)之间的函数关系可近似地表示为
,且每处理一吨垃圾得到可利用的资源值为100元.
(1)该站每月垃圾处理量为多少吨时,才能使每吨垃圾的平均处理成本最低?
(2)该站每月能否获利?如果获利,求出最大利润;如果不获利,则需要市财政补贴,至少补贴多少元才能使该站不亏损?



(1)该站每月垃圾处理量为多少吨时,才能使每吨垃圾的平均处理成本最低?
(2)该站每月能否获利?如果获利,求出最大利润;如果不获利,则需要市财政补贴,至少补贴多少元才能使该站不亏损?
设
是定义在D上的函数,若对D中的任意两数
),恒有
,则称
为定义在D上的C函数.
(1)试判断函数
是否为定义域上的C函数,并说明理由;
(2)若函数
是R上的奇函数,试证明
不是R上的C函数;
(3)设
是定义在D上的函数,若对任何实数
以及D中的任意两数
),恒有
,则称
为定义在D上的π函数. 已知
是R上的π函数,m是给定的正整数,设
,且
,记
. 对于满足条件的任意函数
,试求
的最大值.




(1)试判断函数

(2)若函数


(3)设











为了预防甲型
流感,某学校对教室采用药熏消毒法进行消毒,已知药物燃烧时室内每立方米空气中的含药量
与时间
成正比例,药物燃烧完后满足
,如图所示,现测得药物8
燃毕,此时室内空气中每立方米的含药量为6
,请按题中所供给的信息,解答下列各题.

(1)求
关于
的函数解析式;
(2)研究表明,当空气中每立方米的含药量不低于
且持续时间不低于
时才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?







(1)求


(2)研究表明,当空气中每立方米的含药量不低于

