- 集合与常用逻辑用语
- 函数与导数
- 函数及其性质
- 一次函数与二次函数
- 指对幂函数
- + 函数的应用
- 函数与方程
- 函数模型及其应用
- 导数及其应用
- 定积分
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
我市某商业公司为全面激发每一位职工工作的积极性、创造性,确保2017年超额完成销售任务,向党的十九大献礼.年初该公司制定了一个激励销售人员的奖励方案:每季度销售利润不超过15万元时,则按其销售利润的
进行奖励;当季销售利润超过15万元时,若超过部分为
万元,则超出部分按
进行奖励,没超出部分仍按季销售利润的
进行奖励.记奖金总额为
(单位:万元),季销售利润为
(单位:万元).
(Ⅰ)请写出该公司激励销售人员的奖励方案的函数表达式;
(Ⅱ)如果业务员李明在本年的第三季度获得5.5万元的奖金,那么,他在该季度的销售利润是多少万元?






(Ⅰ)请写出该公司激励销售人员的奖励方案的函数表达式;
(Ⅱ)如果业务员李明在本年的第三季度获得5.5万元的奖金,那么,他在该季度的销售利润是多少万元?
甲、乙二人同时从
地赶住
地,甲先骑自行车到两地的中点再改为跑步;乙先跑步到两地的中点再改为骑自行车,最后两人同时到达
地.已知甲骑自行车比乙骑自行车的速度快,且两人骑车的速度均大于跑步的速度.现将两人离开
地的距离
与所用时间
的函数关系用图象表示如下:

则上述四个函数图象中,甲、乙两人运行的函数关系的图象应该分别是( )







则上述四个函数图象中,甲、乙两人运行的函数关系的图象应该分别是( )
A.图①、图② | B.图①、图④ | C.图③、图② | D.图③、图④ |
已知某工厂每天固定成本是4万元,每生产一件产品成本增加100元,工厂每件产品的出厂价定为
元时,生产
件产品的销售收入是
(元),
为每天生产
件产品的平均利润(平均利润=总利润/总产量).销售商从工厂每件
元进货后又以每件
元销售,
,其中
为最高限价
,
为销售乐观系数,据市场调查,
是由当
是
,
的比例中项时来确定.
(1)每天生产量
为多少时,平均利润
取得最大值?并求
的最大值;
(2)求乐观系数
的值;
(3)若
,当厂家平均利润最大时,求
与
的值.















(1)每天生产量



(2)求乐观系数

(3)若



某公司生产电饭煲,每年需投入固定成本40万元,每生产1万件还需另投入16万元的变动成本,设该公司一年内共生产电饭煲
万件并全部销售完,每一万件的销售收入为
万元,且
(
),该公司在电饭煲的生产中所获年利润为
(万元),(注:利润=销售收入-成本)
(1)写出年利润
(万元)关于年产量
(万件)的函数解析式,并求年利润的最大值;
(2)为了让年利润
不低于2360万元,求年产量
的取值范围.





(1)写出年利润


(2)为了让年利润


某企业生产
,
两种产品,根据市场调查与预测,
产品的利润与投资关系如图(1)所示;
产品的利润与投资的算术平方根成正比,其关系如图(2)所示(注:利润和投资单位:万元).


(1)分别将
,
两种产品的利润表示为投资的函数关系式;
(2)已知该企业已筹集到
万元资金,并将全部投入
,
两种产品的生产.问怎样分配这
万元投资,才能使该企业获得最大利润?其最大利润约为多少万元?






(1)分别将


(2)已知该企业已筹集到



