- 集合与常用逻辑用语
- 函数与导数
- 函数及其性质
- 一次函数与二次函数
- 指对幂函数
- + 函数的应用
- 函数与方程
- 函数模型及其应用
- 导数及其应用
- 定积分
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某工厂生产一种机器的固定成本为5000元,且每生产100部,需要增加投入2500元,对销售市场进行调查后得知,市场对此产品的需求量为每年500部.已知年销售收入为
,其中
是产品售出的数量
.
(1)若
为年产量,
表示年利润,求
的表达式.(年利润=年销售收入—投资成本(包括固定成本)).
(2)当年产量为何值时,工厂的年利润最大,其最大值是多少?



(1)若



(2)当年产量为何值时,工厂的年利润最大,其最大值是多少?
某自来水厂的蓄水池中有
吨水,每天零点开始向居民供水,同时以每小时
吨的速度向池中注水.已知
小时内向居民供水总量为
吨
,问
(1)每天几点时蓄水池中的存水量最少?
(2)若池中存水量不多于
吨时,就会出现供水紧张现象,则每天会有几个小时出现这种现象?





(1)每天几点时蓄水池中的存水量最少?
(2)若池中存水量不多于

《中华人民共和国个人所得税》规定,公民全月工资所得不超过2000元的部分不必纳税,超过2000元的部分为全月应纳税所得额。此项税款按下表分段累计计算:
全月应纳税所得额 | 税率(![]() |
不超过500元的部分 | 5 |
超过500元至2000元的部分 | 10 |
超过2000元的部分 | 15 |
(1)求某人当月所交税款


(2)若某人某月所交税款为26.78元,求当月的工资
(3)若某人当月的工资收入在3000元至6000元之间,求该月所交税款的范围
①对应:A=R,B={正实数},f:x→|x|是从A到B的映射;
②函数
在(1,2)内有一个零点;
③已知函数f(x)是奇函数,函数g(x)=f(x﹣2)+3,则g(x)图象的对称中心的坐标是(2,3);
④若对于任意的x∈[a,2a],都有y∈[a,a2],且x,y满足方程logax+logay=3,这时a的取值集合为{a|a≥2}.其中正确的结论序号是__________
②函数

③已知函数f(x)是奇函数,函数g(x)=f(x﹣2)+3,则g(x)图象的对称中心的坐标是(2,3);
④若对于任意的x∈[a,2a],都有y∈[a,a2],且x,y满足方程logax+logay=3,这时a的取值集合为{a|a≥2}.其中正确的结论序号是__________
某地发生特大地震和海啸,使当地的自来水受到了污染,某部门对水质检测后,决定往水中投放一种药剂来净化水质.已知每投放质量为
的药剂后,经过
天该药剂在水中释放的浓度
(毫克/升) 满足
,其中
,当药剂在水中释放的浓度不低于
(毫克/升)时称为有效净化;当药剂在水中释放的浓度不低于
(毫克/升) 且不高于10(毫克/升)时称为最佳净化
(1)如果投放的药剂质量为
,试问自来水达到有效净化一共可持续几天?
(2)如果投放的药剂质量为
,为了使在7天之内(从投放药剂算起包括7天)的自来水达到最佳净化,试确定应该投放的药剂质量
的值







(1)如果投放的药剂质量为

(2)如果投放的药剂质量为


某商品进货价每件50元,据市场调查,当销售价格(每件x元)为50<x≤80时,每
天售出的件数为
