- 集合与常用逻辑用语
- 函数与导数
- 函数及其性质
- 一次函数与二次函数
- 指对幂函数
- + 函数的应用
- 函数与方程
- 函数模型及其应用
- 导数及其应用
- 定积分
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
对定义在区间
上的函数
和
,如果对任意
,都有
成立,那么称函数
在区间
上可被
替代,
称为“替代区间”.给出以下问题:
①
在区间
上可被
替代;
②
可被
替代的一个“替代区间”为
;
③
在区间
可被
替代,则
;
④
(
),
(
),则存在实数
(
),使得
在区间
上被
替代; 其中真命题有 .









①



②



③




④









已知函数
时,则下列结论不正确的是 .
(1)
,等式
恒成立
(2)
,使得方程
有两个不等实数根
(3)
,若
,则一定有
(4)
,使得函数
在
上有三个零点

(1)


(2)


(3)



(4)


