- 集合与常用逻辑用语
- 函数与导数
- 函数及其性质
- 一次函数与二次函数
- 指对幂函数
- + 函数的应用
- 函数与方程
- 函数模型及其应用
- 导数及其应用
- 定积分
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(2015秋•娄星区期末)如图,△ABC中,边BC=12cm,高AD=6cm,边长为x的正方形HEFG的一边在BC上,其余两个顶点分别在AB、AC上,则边长x为 .


(2015秋•娄星区期末)将一元二次方程3x2=﹣2x+5化为一般形式后,二次项系数、一次项系数、常数项分别为( )
A.3、﹣2、5 | B.3、2、﹣5 | C.3、﹣2、﹣5 | D.3、5、﹣2 |
(2015秋•娄星区期末)某商场以每件40元的价格购进一批商品,当商场按每件50元出售时,可售出500件,经调查,该商品每涨价1元,其销售量就会减少10件;问:
(1)这批商品商场为了能获利8000元,当要求售价不高于每件70元时,售价应定为多少?
(2)总利润能否达到9500元,为什么?
(1)这批商品商场为了能获利8000元,当要求售价不高于每件70元时,售价应定为多少?
(2)总利润能否达到9500元,为什么?
(2007•内江)用配方法解方程:x2﹣4x+2=0,下列配方正确的是( )
A.(x﹣2)2=2 | B.(x+2)2=2 | C.(x﹣2)2=﹣2 | D.(x﹣2)2=6 |
(2015秋•潍坊期末)中国海警辑私船对一艘走私船进行定位:以走私船的当前位置为原点,以正北方向为y轴正方向建立平面直角坐标系(以1海里为单位长度).中国海警辑私船恰在走私船正南方18海里A处(如图).现假设:①走私船的移动路径可视为抛物线y=
x2;②定位后中国海警缉私船即刻沿直线匀速前往追埔;③中国海警辑私船出发t小时后,走私船所在的位置的横坐标为2
t.

(1)当t=1,写出走私船所在位置P的纵坐标,若此时两船恰好相遇,求中国海警辑私船速度的大小;
(2)问中国海警辑私船的时速至少是多少海里才能追上走私船?



(1)当t=1,写出走私船所在位置P的纵坐标,若此时两船恰好相遇,求中国海警辑私船速度的大小;
(2)问中国海警辑私船的时速至少是多少海里才能追上走私船?
(2015秋•娄星区期末)如图,测量小玻璃管口径的量具ABC,AB的长为12cm,AC被分为60等份.如果小玻璃管口DE正好对着量具上20等份处(DE∥AB),那么小玻璃管口径DE是( )

A.8cm B.10cm C.20cm D.60cm

A.8cm B.10cm C.20cm D.60cm
某商场出售一种商品,每天可卖1 000件,每件可获利4元.据经验,若这种商品每件每降价0.1元,则比降价前每天可多卖出100件,为获得最好的经济效益每件单价应降低多少元?