- 集合与常用逻辑用语
- 函数与导数
- 函数奇偶性的定义与判断
- 由奇偶性求函数解析式
- + 函数奇偶性的应用
- 抽象函数的奇偶性
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
,
,其中
,设
.
(1)如果
为奇函数,求实数
、
满足的条件;
(2)在(1)的条件下,若函数
在区间
上为增函数,求
的取值范围;
(3)若对任意的
恒有
成立.证明:当
时,
成立.




(1)如果



(2)在(1)的条件下,若函数



(3)若对任意的




已知函数
(
,
为实数),
.
(1)若函数
的最小值是
,求
的解析式;
(2)在(1)的条件下,
在区间
上恒成立,试求
的取值范围;
(3)若
,
为偶函数,实数
,
满足
,
,定义函数
,试判断
值的正负,并说明理由.




(1)若函数



(2)在(1)的条件下,



(3)若







