- 集合与常用逻辑用语
- 函数与导数
- + 函数奇偶性的定义与判断
- 由奇偶性求函数解析式
- 函数奇偶性的应用
- 抽象函数的奇偶性
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在平面直角坐标系中,当
不是原点时,定义
的“伴随点”为
;当
是原点时,定义
的“伴随点”为它自身,平面曲线
上所有点的“伴随点”所构成的曲线
定义为曲线
的“伴随曲线”,现有下列命题:
①若点
的“伴随点”是点
,则点
的“伴随点”是点
;
②若曲线
关于
轴对称,则其“伴随曲线”
关于
轴对称;
③单位圆的“伴随曲线”是它自身;
④一条直线的“伴随曲线”是一条直线.
其中真命题的个数为( )








①若点




②若曲线




③单位圆的“伴随曲线”是它自身;
④一条直线的“伴随曲线”是一条直线.
其中真命题的个数为( )
A.1 | B.2 | C.3 | D.4 |
一个盒子装有六张卡片,上面分别写着如下六个函数:
.
(I)判断这
个函数的奇偶性;
(II)从中任意拿取两张卡片,若其中至少有一张卡片上写着的函数为奇函数.在此条件下,求两张卡片上写着的函数相加得到的新函数为奇函数的概率.

(I)判断这

(II)从中任意拿取两张卡片,若其中至少有一张卡片上写着的函数为奇函数.在此条件下,求两张卡片上写着的函数相加得到的新函数为奇函数的概率.