- 集合与常用逻辑用语
- 函数与导数
- 函数的单调性
- 函数的最值
- + 函数的奇偶性
- 函数奇偶性的定义与判断
- 由奇偶性求函数解析式
- 函数奇偶性的应用
- 抽象函数的奇偶性
- 函数的周期性
- 函数的对称性
- 函数的图象
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
函数f(x)是定义在R上的奇函数,下列说法:
①f(0)=0;
②若f(x)在[0,+∞)上有最小值为-1,则f(x)在(-∞,0]上有最大值为1;
③若f(x)在[1,+∞)上为增函数,则f(x)在(-∞,-1]上为减函数;
④若x>0时,f(x)=x2-2x,则x<0时,f(x)=-x2-2x.其中正确说法的个数是( )
①f(0)=0;
②若f(x)在[0,+∞)上有最小值为-1,则f(x)在(-∞,0]上有最大值为1;
③若f(x)在[1,+∞)上为增函数,则f(x)在(-∞,-1]上为减函数;
④若x>0时,f(x)=x2-2x,则x<0时,f(x)=-x2-2x.其中正确说法的个数是( )
A.1个 | B.2个 | C.3个 | D.4个 |
已知二次函数
(
为常数,且
)满足条件:
的对称轴
且方程
有两个相等实根.
(1)求
的解析式;
(2)是否存在实数
,使
定义域和值域分别为
和
,如果存在,求出
的值;如果不存在,说明理由.






(1)求

(2)是否存在实数




