- 集合与常用逻辑用语
- 函数与导数
- 函数及其表示
- + 函数的基本性质
- 函数的单调性
- 函数的最值
- 函数的奇偶性
- 函数的周期性
- 函数的对称性
- 函数的图象
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知定义在R上的偶函数f(x)和奇函数g(x)满足
.
(1)求函数f(x)和g(x)的表达式;
(2)当
时,不等式
恒成立,求实数a的取值范围;
(3)若方程
在
上恰有一个实根,求实数m的取值范围.

(1)求函数f(x)和g(x)的表达式;
(2)当


(3)若方程


设定义域为R的函数
.
(1)在平面直角坐标系中作出函数f(x)的图象,并指出f(x)的单调区间(不需证明);
(2)若方程f(x)+5a=0有两个解,求出a的取值范围(不需严格证明,简单说明即可);
(3)设定义域为R的函数g(x)为偶函数,且当x≥0时,g(x)=f(x),求g(x)的解析式.

(1)在平面直角坐标系中作出函数f(x)的图象,并指出f(x)的单调区间(不需证明);
(2)若方程f(x)+5a=0有两个解,求出a的取值范围(不需严格证明,简单说明即可);
(3)设定义域为R的函数g(x)为偶函数,且当x≥0时,g(x)=f(x),求g(x)的解析式.
已知
是定义在
上的奇函数,且
,若
且
时,有
成立.
(1)判断
在
上的单调性,并用定义证明;
(2)解不等式
;
(3)若
对所有的
恒成立,求实数
的取值范围.






(1)判断


(2)解不等式

(3)若



若定义在R上函数
的图象关于图象上点(1,0)对称,f(x)对任意的实数x都有
且f(3)=0,则函数y=f(x)在区间
上的零点个数最少有( )



A.2020个 | B.1768个 | C.1515个 | D.1514个 |