- 集合与常用逻辑用语
- 函数与导数
- 函数及其表示
- + 函数的基本性质
- 函数的单调性
- 函数的最值
- 函数的奇偶性
- 函数的周期性
- 函数的对称性
- 函数的图象
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知奇函数f(x)在R上是减函数,若a=﹣f(1og3
),b=f(
),c=f(2﹣0.8),则a,b,c的大小关系为( )


A.a<b<c | B.a<c<b | C.b<c<a | D.c<a<b |
如图所示,将一块直角三角形木板
置于平面直角坐标系中,已知
,点
是三角形木板内一点,现因三角形木板中阴影部分受到损坏,要把损坏部分锯掉,可用经过点
的任一直线
将三角形木板锯成
.设直线
的斜率为
.

(Ⅰ)求点
的坐标及直线
的斜率
的范围;
(Ⅱ)令
的面积为
,试求出
的取值范围;
(Ⅲ)令(Ⅱ)中
的取值范围为集合
,若
对
恒成立,求
的取值范围.









(Ⅰ)求点



(Ⅱ)令



(Ⅲ)令(Ⅱ)中





如图所示是某条公共汽车路线收支差额y与乘客量x的图象(收支差额=车票收入—支出费用)由于目前本条线路在亏损,公司有关人员提出了两条建议:
建议(Ⅰ)是不改变车票价格,减少支出费用;建议(Ⅱ)是不改变支出费用,提高车票价格. 图中虚线表示调整前的状态,实线表示调整后的状态. 在上面四个图象中


建议(Ⅰ)是不改变车票价格,减少支出费用;建议(Ⅱ)是不改变支出费用,提高车票价格. 图中虚线表示调整前的状态,实线表示调整后的状态. 在上面四个图象中


A.①反映了建议(Ⅱ),③反映了建议(Ⅰ) | B.①反映了建议(Ⅰ),③反映了建议(Ⅱ) |
C.②反映了建议(Ⅰ),④反映了建议(Ⅱ) | D.④反映了建议(Ⅰ),②反映了建议(Ⅱ) |
函数
的定义域为
,若对任意的
,当
时,都有
,则称
在
上为非减函数. 设
在
上为非减函数,且满足:①
;②
;③
.则:(ⅰ)
_____;(ⅱ)
_______.













