- 集合与常用逻辑用语
- 函数与导数
- + 函数的定义
- 函数关系的判断
- 求函数值
- 已知函数值求自变量或参数
- 区间
- 函数的定义域
- 函数的值域
- 函数的解析式
- 相等函数
- 函数的表示方法
- 分段函数
- 映射
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(2013春•衡水校级月考)如图所示的韦恩图中,A、B是非空集合,定义A*B表示阴影部分集合.若x,y∈R,
,B={y|y=3x,x>0},则A*B=( )

A.(2,+∞)
B.[0,1)∪(2,+∞)
C.[0,1]∪(2,+∞)
D.[0,1]∪[2,+∞)


A.(2,+∞)
B.[0,1)∪(2,+∞)
C.[0,1]∪(2,+∞)
D.[0,1]∪[2,+∞)
设
是集合M到集合N的映射,下列说法正确的是( )

A.M中每一个元素在N中必有输出值 |
B.N中每一个元素在M中必有输入值 |
C.N中每一个元素在M中的输入值是唯一的 |
D.N是M中所有元素的输出值的集合 |
(2015秋•上海校级期中)对于实数x,记[x]表示不超过x的最大整数,如[3.14]=3,[﹣0.25]=﹣1.若存在实数t,使得[t]=1,[t2]=2,[t3]=3…[tt]=n同时成立,则正整数n的最大值为 .
(2015秋•上海校级期中)若实数x、y、m满足|x﹣m|<|y﹣m|,则称x比y接近m.
(1)若2x比1接近3,求x的取值范围;
(2)已知函数f(x)定义域D=(﹣∞,0)∪(0,1)∪(1,3)∪(3,+∞),对于任意的x∈D,f(x)等于x2﹣2x与x中接近0的那个值,写出函数f(x)的解析式,若关于x的方程f(x)﹣a=0有两个不同的实数根,求出a的取值范围;
(3)已知a,b∈R,m>0且a≠b,求证:
比
接近0.
(1)若2x比1接近3,求x的取值范围;
(2)已知函数f(x)定义域D=(﹣∞,0)∪(0,1)∪(1,3)∪(3,+∞),对于任意的x∈D,f(x)等于x2﹣2x与x中接近0的那个值,写出函数f(x)的解析式,若关于x的方程f(x)﹣a=0有两个不同的实数根,求出a的取值范围;
(3)已知a,b∈R,m>0且a≠b,求证:

