- 集合与常用逻辑用语
- 函数与导数
- 函数的定义
- 区间
- 函数的定义域
- 函数的值域
- + 函数的解析式
- 已知函数类型求解析式
- 已知f(g(x))求解析式
- 求抽象函数的解析式
- 相等函数
- 函数的表示方法
- 分段函数
- 映射
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如果函数
的定义域为
,对于定义域内的任意
存在实数
使得
成立,则称此函数具有“
性质”.
(1)判断函数
是否具有“
性质”,若具有“
性质”,写出所有
的值;若不具有“
性质”,请说明理由.
(2)设函数
具有“
性质”,且当
时,
,求当
时函数
的解析式;若
与
交点个数为1001个,求
的值.






(1)判断函数





(2)设函数










求下列函数的解析式
(1)设函数
是定义在R上的函数,对任意实数
,求函数
的解析式;
(2)已知定义在R上的函数
是偶函数,且
时,
,求函数
的解析式.
(1)设函数



(2)已知定义在R上的函数



