- 集合与常用逻辑用语
- 函数与导数
- 函数及其性质
- 一次函数与二次函数
- 指对幂函数
- 函数的应用
- 导数及其应用
- 定积分
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某同学求函数
的零点时,用计算器算得部分函数值如表所示,则方程
的近似解(精确度0.1)可取为( )


![]() | 2 | 3 | 2.5 | 2.75 | 2.625 | 2.5625 |
![]() | ![]() | 1.0986 | ![]() | 0.512 | 0.215 | 0.066 |
A.2.52 | B.2.625 | C.2.47 | D.2.75 |
已知函数
的一个零点
,用二分法求精确度为0.01的
的近似值时,判断各区间中点的函数值的符号最多需要的次数为( )



A.6 | B.7 | C.8 | D.9 |
已知函数
.

(1)完成表一中
对应的
值,并在坐标系中用描点法作出函数
的图象:(表一)
(2)根据你所作图象判断函数
的单调性,并用定义证明;
(3)说明方程
的根在区间
存在的理由,并从表二中求使方程
的根的近似值达到精确度为0.01时运算次数
的最小值并求此时方程
的根的近似值,且说明理由.
(表二)二分法的结果


(1)完成表一中



![]() | 0.25 | 0.5 | 0.75 | 1 | 1.25 | 1.5 |
![]() | | | 0.08 | | 1.82 | 2.58 |
(2)根据你所作图象判断函数

(3)说明方程





(表二)二分法的结果
运算次数![]() | ![]() | 左端点![]() | 右端点![]() | ![]() |
![]() | -0.537 | 0.6 | 0.75 | 0.08 |
![]() | -0.217 | 0.675 | 0.75 | 0.08 |
![]() | -0.064 | 0.7125 | 0.75 | 0.08 |
![]() | -0.064 | 0.7125 | 0.73125 | 0.011 |
![]() | -0.03 | 0.721875 | 0.73125 | 0.011 |
![]() | -0.01 | 0.7265625 | 0.73125 | 0.011 |
在一个风雨交加的夜里,某水库闸房(设为A)到某指挥部(设为B)的电话线路有一处发生了故障.这是一条
长的线路,想要尽快地查出故障所在.如果沿着线路一小段小段地查找,困难很多,每查一小段需要很长时间.
(1)维修线路的工人师傅随身带着话机,他应怎样工作,才能每查一次,就把待查的线路长度缩减一半?
(2)要把故障可能发生的范围缩小到
,最多要查多少次?

(1)维修线路的工人师傅随身带着话机,他应怎样工作,才能每查一次,就把待查的线路长度缩减一半?
(2)要把故障可能发生的范围缩小到
