- 集合与常用逻辑用语
- + 充要条件的证明
- 探求命题为真的充要条件
- 根据充要条件求参数
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知
是等差数列
的前n项和,则“
对,
恒成立”是“数列
为递增 数列”的( )





A.充分而不必要条件 | B.必要而不充分条件 |
C.充分必要条件 | D.既不充分也不必要条件 |
给定数列
,对
,该数列前
项的最大值记为
,后
项
的最小值记为
,
.
(1)设数列
为3,4,7,5,2,写出
,
,
,
的值;
(2)设
是
,公比
的等比数列,证明:
成等比数列;
(3)设
,证明:
的充分必要条件为
是公差为
的等差数列.








(1)设数列





(2)设




(3)设




若数列{an}满足:
,且a1=1,则称{an}为一个X数列.对于一个X数列{an},若数列{bn}满足:b1=1,且
,
,则称{bn}为{an}的伴随数列.
(Ⅰ)若X数列{an}中a2=1,a3=0,a4=1,写出其伴随数列{bn}中b2,b3,b4的值;
(Ⅱ)若{an}为一个X数列,{bn}为{an}的伴随数列,证明:“{an}为常数列”是“{bn}为等比数列”的充要条件.



(Ⅰ)若X数列{an}中a2=1,a3=0,a4=1,写出其伴随数列{bn}中b2,b3,b4的值;
(Ⅱ)若{an}为一个X数列,{bn}为{an}的伴随数列,证明:“{an}为常数列”是“{bn}为等比数列”的充要条件.
下列说法正确的是( )
A.若![]() ![]() ![]() |
B.命题“![]() ![]() ![]() ![]() |
C.等比数列![]() ![]() ![]() ![]() ![]() |
D.“平面向量![]() ![]() ![]() |
在△ABC中,角A,B均为锐角,则“cosA>sinB”是“△ABC是钝角三角形”的_____ 条件.(填“充分不必要”,“必要不充分”,“充要”,“既不充分又不必要”)