- 集合与常用逻辑用语
- + 充要条件的证明
- 探求命题为真的充要条件
- 根据充要条件求参数
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知下列四个命题:
:函数
的零点所在的区间为
;
:设
,则
是
成立的充分不必要条件;
:已知等腰三角形
的底边
的长为
,则
8;
:设数列
的前n项和
,则
的值为15.
其中真命题的个数是( )
















其中真命题的个数是( )
A.1 | B.2 | C.3 | D.4 |
判断下列各题中p是q的什么条件.
(1)p:|x|=|y|,q:x=y;
(2)p:△ABC是直角三角形,q:△ABC是等腰三角形;
(3)p:四边形的对角线互相平分,q:四边形是矩形;
(4)p:圆x2+y2=r2(r>0)与直线ax+by+c=0相切,q:c2=(a2+b2)r2.
(1)p:|x|=|y|,q:x=y;
(2)p:△ABC是直角三角形,q:△ABC是等腰三角形;
(3)p:四边形的对角线互相平分,q:四边形是矩形;
(4)p:圆x2+y2=r2(r>0)与直线ax+by+c=0相切,q:c2=(a2+b2)r2.
给出如下四个说法:
①已知p,q都是命题,若p∧q为假命题,则p,q均为假命题;
②命题“若a>b,则3a>3b-1”的否命题为“若a≤b,则3a≤3b-1”;
③命题“∀x∈R,x2+1≥0”的否定是“∃x0∈R,
+1<0”;
④“a≥0”是“∃x0∈R,a
+x0+1≥0”的充分必要条件.
其中正确说法的序号是 ( )
①已知p,q都是命题,若p∧q为假命题,则p,q均为假命题;
②命题“若a>b,则3a>3b-1”的否命题为“若a≤b,则3a≤3b-1”;
③命题“∀x∈R,x2+1≥0”的否定是“∃x0∈R,

④“a≥0”是“∃x0∈R,a

其中正确说法的序号是 ( )
A.①③ | B.②③ | C.②③④ | D.②④ |
给出如下四个命题:
①若“p∧q”为假命题,则p,q均为假命题;
②命题“若a>b,则2a>2b-1”的否命题为“若a≤b,则2α≤2b-1”;
③“∀x∈R,x2+1≥1”的否定是“∃x∈R,x2+1≤1”;
④在△ABC中,“A>B”是“sin A>sin B”的充要条件.
其中不正确的命题的个数是_____.
①若“p∧q”为假命题,则p,q均为假命题;
②命题“若a>b,则2a>2b-1”的否命题为“若a≤b,则2α≤2b-1”;
③“∀x∈R,x2+1≥1”的否定是“∃x∈R,x2+1≤1”;
④在△ABC中,“A>B”是“sin A>sin B”的充要条件.
其中不正确的命题的个数是_____.