- 集合与常用逻辑用语
- 集合
- + 常用逻辑用语
- 命题及其关系
- 充分条件与必要条件
- 简单的逻辑联结词
- 全称量词与存在量词
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
对数列
,“
对于任意
成立”是“其前n项和数列
为递增数列”的( )




A.充分非必要条件 | B.必要非充分条件 |
C.充分必要条件 | D.非充分非必要条件 |
若无穷数列
满足:只要
,必有
,则称
具有性质
.
(1)若
具有性质
,且
,求
;
(2)若无穷数列
是等差数列,无穷数列
是等比数列,
,
,
.判断
是否具有性质
,并说明理由;
(3)设
是无穷数列,已知
.求证:“对任意
都具有性质
”的充要条件为“
是常数列”.





(1)若





(2)若无穷数列







(3)设





若数列
:
,满足
,则称
为
数列,并记
.
(1)写出所有满足
,
的
数列
;
(2)若
,
,证明:
数列是递减数列的充要条件是
;
(3)对任意给定的正整数
,且
,是否存在
的
数列
,使得
?如果存在,求出正整数
满足的条件;如果不存在,说明理由.






(1)写出所有满足




(2)若




(3)对任意给定的正整数







若有穷数列
满足
,则称
为
数列.
(1)写出满足
的两个
数列
;
(2)若
,
,证明:
数列是递增数列的充要条件是
;
(3)记
,对任意给定的正整数
,是否存在
的
数列
,使得
?如果存在,求出正整数
满足的条件;如果不存在,说明理由.




(1)写出满足



(2)若




(3)记







已知数列
是无穷数列,满足
.
(1)若
,
,求
、
、
的值;
(2)求证:“数列
中存在
使得
”是“数列
中有无数多项是
”的充要条件;
(3)求证:在数列
中
,使得
.


(1)若





(2)求证:“数列





(3)求证:在数列



在数列
中,已知
,
,则“
”是“
是单调递增数列”的( )





A.充分而不必要条件 | B.必要而不充分条件 |
C.充分必要条件 | D.既不充分也不必要条件 |