- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 正方形性质理解
- 根据正方形的性质求角度
- + 根据正方形的性质求线段长
- 根据正方形的性质求面积
- 正方形折叠问题
- 求正方形重叠部分面积
- 根据正方形的性质证明
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在正方形ABCD中,E是CD上的点,若BE=3,CE=1,则正方形ABCD的边长为______,对角线的长为______________________.

如图,已知正方形ABCD的边长为1,G为CD边上的一个动点(点G与C、D不重合),以CG为一边向正方形ABCD外作正方形GCEF,连接DE交BG的延长线于点H.

(1)求证:①△BCG≌△DCE;②BH⊥D

(1)求证:①△BCG≌△DCE;②BH⊥D
A. (2)当点G运动到什么位置时,BH垂直平分DE?请说明理由. |
如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若△CEF的周长为18,则OF的长为( )


A.3 | B.4 | C.![]() | D.![]() |
如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,Q为对角线AC上的动点,则△BEQ周长的最小值为( )


A.5 | B.6 | C.![]() | D.8 |
如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE,其中正确结论有()个.


A.2 | B.3 | C.4 | D.5 |
如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形,再以对角线AE为边作第三个正方形AEGH,如此下去,第n个正方形的边长为_____ .
