- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 矩形的性质
- 直角三角形斜边上的中线
- 矩形的判定与性质综合
- + 菱形的性质
- 利用菱形的性质求角度
- 利用菱形的性质求线段长
- 利用菱形的性质求面积
- 利用菱形的性质证明
- 菱形的判定
- 菱形的判定与性质综合
- 正方形的性质
- 正方形的判定
- 正方形的判定与性质综合
- 四边形综合
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如好,菱形ABCD,AB=6,∠A=120°,点E,F,G分别为线段BC,CD,BD上的任意一点,则EG+FG的最小值为( )


A.4 | B.3![]() | C.6 | D.4![]() |
己知:在菱形ABCD中,∠ABC=60°,对角线AC,BD相交于点O,点E是线段BD上一动点(不与点B,D重合),连接AE,以AE为边在AE的右侧作等边△AEF.
(1)如图①,若点F落在线段BD上,线段AE、FD的数量关系是_;
(2)如图②,若点F不在线段BD上,(1)中的结论是否成立?若成立,请证明:若不成立,请说明理由;
(3)BE与BD满足BE= BD时,AE∥FD.
(1)如图①,若点F落在线段BD上,线段AE、FD的数量关系是_;
(2)如图②,若点F不在线段BD上,(1)中的结论是否成立?若成立,请证明:若不成立,请说明理由;
(3)BE与BD满足BE= BD时,AE∥FD.

如图,在平行四边形ABCD中,点E,F在对角线AC上,且AE=CF。

(1)求证:四边形DEBF是平行四边形;
(2)若DE=3,CD=4,∠EDC=90°,当四边形DEBF是菱形时,AE的长为多少?

(1)求证:四边形DEBF是平行四边形;
(2)若DE=3,CD=4,∠EDC=90°,当四边形DEBF是菱形时,AE的长为多少?