- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 矩形性质理解
- 利用矩形的性质求角度
- 根据矩形的性质与判定求线段长
- 根据矩形的性质与判定求面积
- 利用矩形的性质证明
- 求矩形在平面直角坐标系中的坐标
- + 矩形与折叠问题
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在矩形ABCD中,AB=3,BC=9,把矩形ABCD沿对角线BD折叠,使点C与点F重合,BF交AD于点M,过点C作CE⊥BF于点E,交AD于点G,则MG的长=_____.

如图,在矩形ABCD中,AB=4,BC=6,E为BC的中点.将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则△CDF的面积为( )


A.3.6 | B.4.32 | C.5.4 | D.5.76 |
在我们学习过的数学教科书中,有一个数学活动,其具体操作过程是:
第一步:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开(如图1);
第二步:再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN(如图2).
请解答以下问题:
(1)如图2,若延长MN交BC于P,△BMP是什么三角形?请证明你的结论;
(2)在图2中,若AB=a,BC=b,a、b满足什么关系,才能在矩形纸片ABCD上剪出符合(1)中结论的三角形纸片BMP?
第一步:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开(如图1);
第二步:再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN(如图2).
请解答以下问题:
(1)如图2,若延长MN交BC于P,△BMP是什么三角形?请证明你的结论;
(2)在图2中,若AB=a,BC=b,a、b满足什么关系,才能在矩形纸片ABCD上剪出符合(1)中结论的三角形纸片BMP?

如图,已知矩形ABCD.
(1)在图中作出△CDB沿对角线BD所在直线对折后的△C′DB,C点的对应点为C′(用尺规作图,保留作图痕迹,简要写明作法,不要求证明);
(2)设C′B与AD的交点为E.
①若DC=3cm,BC=6cm,求△BED的面积;
②若△BED的面积是矩形ABCD的面积的
,求
的值.
(1)在图中作出△CDB沿对角线BD所在直线对折后的△C′DB,C点的对应点为C′(用尺规作图,保留作图痕迹,简要写明作法,不要求证明);
(2)设C′B与AD的交点为E.
①若DC=3cm,BC=6cm,求△BED的面积;
②若△BED的面积是矩形ABCD的面积的



如图,将一张矩形纸片
的边
斜着向
边对折,使点
落在
上,记为
,折痕为
;再将
边斜向下对折,使点
落在
上,记为
,折痕为
,
,
.则矩形纸片
的面积为 .
















如图1,矩形纸片ABCD中,AB=4,BC=4
,将矩形纸片沿对角线AC向下翻折,点D落在点D’处,联结B D’,如图2,求线段BD’ 的长.


如图,将矩形纸片ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,连结A

A. 证明:(1)BF=D | B. (2)AE//B | C. (3)若AB=6,BC=8,求AF的长,并求△FBD的周长和面积。 |
