如图,矩形纸片ABCD中,AB=,BC=.某课题小组利用这张矩形纸片依次进行如下操作(每次折叠后均展开).
如图①,第一次将纸片折叠,使点B与点D重合,折痕与BD交与点O1,设O1D的中点为D1
如图②,第二次将纸片折叠,使点B与点D1重合,折痕与BD交与点O2,设O2D3的中点为D2
如图③,第三次将纸片折叠,使点B与点D2重合,折痕与BD交与点O3,设O3D2的中点为D3

根据以上操作结果,回答下列问题:
(1)如图①,MN是折痕,求证:△DA′M≌△DCN;
(2)分别求出线段BO1、BO2、BO3的长,并直接写出第n次折叠后BOn的长(用含n的式子表示);
(3)如图②,第二次折叠时,折痕一定会经过点A吗?请通过计算判断.
当前题号:1 | 题型:解答题 | 难度:0.99
已知:直线l1与直线l2平行,且它们之间的距离为3,A,B是直线l1上的两个定点,C,D是直线l2上的两个动点(点C在点D的左侧),AB=CD=6,连接AC、BD、BC,将△ABC沿BC折叠得到△A1B
A.(如图1)
(1)当A1与D重合时(如图2),四边形ABDC是什么特殊四边形,为什么?
(2)当A1与D不重合时,连接A1D,则A1 D∥BC(不需证明),此时若以A1,B,C,D为顶点的四边形为矩形,且矩形的边长分别为a,b,求(a+b)2的值.
当前题号:2 | 题型:解答题 | 难度:0.99
如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:
①四边形CFHE是菱形;②EC平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时,EF=2.以上结论中,你认为正确的有()个.
A.1B.2C.3D.4
当前题号:3 | 题型:单选题 | 难度:0.99
综合与实践
折纸是一项有趣的活动,同学们小时候都玩过折纸,可能折过小动物、小花、飞机、小船等,折纸活动也伴随着我们初中数学的学习.
在折纸过程中,我们可以通过研究图形的性质和运动、确定图形位置等,进一步发展空间观念,在经历借助图形思考问题的过程中,我们会初步建立几何直观,折纸往往从矩形纸片开始,今天,就让我们带着数学的眼光来玩一玩折纸,看看折叠矩形的对角线之后能得到哪些数学结论.
实践操作
如图1,将矩形纸片ABCD沿对角线AC翻折,使点B′落在矩形ABCD所在平面内,B′C和AD相交于点E,连接B′
A.
解决问题
(1)在图1中,
①B′D和AC的位置关系为  
②将△AEC剪下后展开,得到的图形是  
(2)若图1中的矩形变为平行四边形时(AB≠BC),如图2所示,结论①和结论②是否成立,若成立,请挑选其中的一个结论加以证明,若不成立,请说明理由;
(3)小红沿对角线折叠一张矩形纸片,发现所得图形是轴对称图形,沿对称轴再次折叠后,得到的仍是轴对称图形,则小红折叠的矩形纸片的长宽之比为  
拓展应用
(4)在图2中,若∠B=30°,AB=4,当△AB′D恰好为直角三角形时,BC的长度为  
当前题号:4 | 题型:解答题 | 难度:0.99
一张长方形的纸条,按如图方式折叠一下,已知∠3=120°,则∠1的度数是(  )
A.40°B.50°C.60°D.70°
当前题号:5 | 题型:单选题 | 难度:0.99
如图,在ABCD中,点E在AD上,以BE为折痕将△ABE翻折,点A恰好落在CD边上的点F处. 已知△EDF的周长为12,△BCF的周长为22,求CF的长.
当前题号:6 | 题型:解答题 | 难度:0.99
如图,已知矩形纸片ABCD,点EAB的中点,点GBC上的一点,∠BEG>60°,现沿直线EG将纸片折叠,使点B落在纸片上的点H处,连结AH,则与∠BEG相等的角的个数为(  )
A.4B.3C.2D.1
当前题号:7 | 题型:单选题 | 难度:0.99
如图,把矩形ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处.若AEaABbBFc,请写出abc之间的一个等量关系为__________.
当前题号:8 | 题型:填空题 | 难度:0.99
如图,矩形ABCD中,AB=8,BC=15,点E是AD边上一点,连接BE,把△ABE沿BE折叠,使点A落在点A′处,点F是CD边上一点,连接EF,把△DEF沿EF折叠,使点D落在直线EA′上的点D′处,当点D′落在BC边上时,AE的长为_____.
当前题号:9 | 题型:填空题 | 难度:0.99
如图,将长方形纸片折叠,使A落在BC上F处,折痕为BE,若沿EF剪下来,把所折部分展开是一个正方形,其数学原理是(    )
A.邻边相等的矩形是正方形B.对角线相等的菱形是正方形
C.正方形被对角线分成两个全等的等腰三角形D.正方形是轴对称图形
当前题号:10 | 题型:单选题 | 难度:0.99