- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 矩形性质理解
- 利用矩形的性质求角度
- 根据矩形的性质与判定求线段长
- 根据矩形的性质与判定求面积
- 利用矩形的性质证明
- 求矩形在平面直角坐标系中的坐标
- + 矩形与折叠问题
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,矩形纸片ABCD中,AB=
,BC=
.某课题小组利用这张矩形纸片依次进行如下操作(每次折叠后均展开).
如图①,第一次将纸片折叠,使点B与点D重合,折痕与BD交与点O1,设O1D的中点为D1;
如图②,第二次将纸片折叠,使点B与点D1重合,折痕与BD交与点O2,设O2D3的中点为D2;
如图③,第三次将纸片折叠,使点B与点D2重合,折痕与BD交与点O3,设O3D2的中点为D3;
…
根据以上操作结果,回答下列问题:
(1)如图①,MN是折痕,求证:△DA′M≌△DCN;
(2)分别求出线段BO1、BO2、BO3的长,并直接写出第n次折叠后BOn的长(用含n的式子表示);
(3)如图②,第二次折叠时,折痕一定会经过点A吗?请通过计算判断.


如图①,第一次将纸片折叠,使点B与点D重合,折痕与BD交与点O1,设O1D的中点为D1;
如图②,第二次将纸片折叠,使点B与点D1重合,折痕与BD交与点O2,设O2D3的中点为D2;
如图③,第三次将纸片折叠,使点B与点D2重合,折痕与BD交与点O3,设O3D2的中点为D3;
…
根据以上操作结果,回答下列问题:
(1)如图①,MN是折痕,求证:△DA′M≌△DCN;
(2)分别求出线段BO1、BO2、BO3的长,并直接写出第n次折叠后BOn的长(用含n的式子表示);
(3)如图②,第二次折叠时,折痕一定会经过点A吗?请通过计算判断.

已知:直线l1与直线l2平行,且它们之间的距离为3,A,B是直线l1上的两个定点,C,D是直线l2上的两个动点(点C在点D的左侧),AB=CD=6,连接AC、BD、BC,将△ABC沿BC折叠得到△A1B
(1)当A1与D重合时(如图2),四边形ABDC是什么特殊四边形,为什么?
(2)当A1与D不重合时,连接A1D,则A1 D∥BC(不需证明),此时若以A1,B,C,D为顶点的四边形为矩形,且矩形的边长分别为a,b,求(a+b)2的值.
A.(如图1) |
(2)当A1与D不重合时,连接A1D,则A1 D∥BC(不需证明),此时若以A1,B,C,D为顶点的四边形为矩形,且矩形的边长分别为a,b,求(a+b)2的值.

如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:
①四边形CFHE是菱形;②EC平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时,EF=2
.以上结论中,你认为正确的有()个.

①四边形CFHE是菱形;②EC平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时,EF=2


A.1 | B.2 | C.3 | D.4 |
综合与实践
折纸是一项有趣的活动,同学们小时候都玩过折纸,可能折过小动物、小花、飞机、小船等,折纸活动也伴随着我们初中数学的学习.
在折纸过程中,我们可以通过研究图形的性质和运动、确定图形位置等,进一步发展空间观念,在经历借助图形思考问题的过程中,我们会初步建立几何直观,折纸往往从矩形纸片开始,今天,就让我们带着数学的眼光来玩一玩折纸,看看折叠矩形的对角线之后能得到哪些数学结论.
实践操作
如图1,将矩形纸片ABCD沿对角线AC翻折,使点B′落在矩形ABCD所在平面内,B′C和AD相交于点E,连接B′

折纸是一项有趣的活动,同学们小时候都玩过折纸,可能折过小动物、小花、飞机、小船等,折纸活动也伴随着我们初中数学的学习.
在折纸过程中,我们可以通过研究图形的性质和运动、确定图形位置等,进一步发展空间观念,在经历借助图形思考问题的过程中,我们会初步建立几何直观,折纸往往从矩形纸片开始,今天,就让我们带着数学的眼光来玩一玩折纸,看看折叠矩形的对角线之后能得到哪些数学结论.
实践操作
如图1,将矩形纸片ABCD沿对角线AC翻折,使点B′落在矩形ABCD所在平面内,B′C和AD相交于点E,连接B′
A. 解决问题 (1)在图1中, ①B′D和AC的位置关系为 ; ②将△AEC剪下后展开,得到的图形是 ; (2)若图1中的矩形变为平行四边形时(AB≠BC),如图2所示,结论①和结论②是否成立,若成立,请挑选其中的一个结论加以证明,若不成立,请说明理由; (3)小红沿对角线折叠一张矩形纸片,发现所得图形是轴对称图形,沿对称轴再次折叠后,得到的仍是轴对称图形,则小红折叠的矩形纸片的长宽之比为 ; 拓展应用 (4)在图2中,若∠B=30°,AB=4 ![]() |

如图,在□ABCD中,点E在AD上,以BE为折痕将△ABE翻折,点A恰好落在CD边上的点F处. 已知△EDF的周长为12,△BCF的周长为22,求CF的长.

如图,已知矩形纸片ABCD,点E是AB的中点,点G是BC上的一点,∠BEG>60°,现沿直线EG将纸片折叠,使点B落在纸片上的点H处,连结AH,则与∠BEG相等的角的个数为( )


A.4 | B.3 | C.2 | D.1 |
如图,把矩形ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处.若AE=a,AB=b,BF=c,请写出a,b,c之间的一个等量关系为__________.

如图,矩形ABCD中,AB=8,BC=15,点E是AD边上一点,连接BE,把△ABE沿BE折叠,使点A落在点A′处,点F是CD边上一点,连接EF,把△DEF沿EF折叠,使点D落在直线EA′上的点D′处,当点D′落在BC边上时,AE的长为_____.

如图,将长方形纸片折叠,使A落在BC上F处,折痕为BE,若沿EF剪下来,把所折部分展开是一个正方形,其数学原理是( )


A.邻边相等的矩形是正方形 | B.对角线相等的菱形是正方形 |
C.正方形被对角线分成两个全等的等腰三角形 | D.正方形是轴对称图形 |