- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 根据已知条件判断是否构成平行四边形
- 添一个条件使四边形成为平行四边形
- 数图形中平行四边形的个数
- 求与已知三点组成平行四边形的点的个数
- + 证明四边形是平行四边形
- 全等三角形拼平行四边形问题
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
下列四个命题是假命题的是



A.平行线间的距离处处相等 |
B.三角形的一个外角等于两个内角的和 |
C.两组对角分别相等的四边形是平行四边形 |
D.一组对边平行且相等的四边形是平行四边形 |
如图,点E,F分别在平行四边形ABCD的边BA,DC的延长线上,连接EF,交对角线BD于点O,已知OE=O
A.![]() 求证:四边形EBFD是平行四边形. |
如图,在△ABC中,AB=AC,点M在BA的延长线上.
(1)按下列要求作图,并在图中标明相应的字母.(保留作图痕迹)
①作∠MAC的平分线AN;
②作AC的中点O,连结BO,并延长BO交AN于点D,连结CD;
(2)在(1)的条件下,判断四边形ABCD的形状,并证明你的结论.
(1)按下列要求作图,并在图中标明相应的字母.(保留作图痕迹)
①作∠MAC的平分线AN;
②作AC的中点O,连结BO,并延长BO交AN于点D,连结CD;
(2)在(1)的条件下,判断四边形ABCD的形状,并证明你的结论.

如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE,已知菱形ABCD的周长为20cm,则 OE长为_____cm.

在△ABC中,AM是中线,D是AM所在直线上的一个动点(不与点A重合),DE∥AB交AC所在直线于点F,CE∥AM,连接BD,AE.

(1)如图1,当点D与点M重合时,观察发现:△ABM向右平移
BC到了△EDC的位置,此时四边形ABDE是平行四边形.请你给予验证;
(2)如图2,图3,图4,是当点D不与点M重合时的三种情况,你认为△ABM应该平移到什么位置?直接在图中画出来.此时四边形ABDE还是平行四边形吗?请你选择其中一种情况说明理由.

(1)如图1,当点D与点M重合时,观察发现:△ABM向右平移

(2)如图2,图3,图4,是当点D不与点M重合时的三种情况,你认为△ABM应该平移到什么位置?直接在图中画出来.此时四边形ABDE还是平行四边形吗?请你选择其中一种情况说明理由.
如图,在□ABCD中,E、F分别是AD、BC的中点,∠AEF的角平分线交AB于点M,∠EFC的角平分线交CD于点N,连接MF、N

A.![]() (1)求证:四边形EMFN是平行四边形. (2)小明在完成(1)的证明后继续进行了探索,他猜想:当AB=AD时,四边形EMFN是矩形.请在下列框图中补全他的证明思路. |

已知:如图,四边形ABCD为平行四边形,E,F是对角线AC上的两点,AE=CF,连接DE,BE,BF,求证:四边形DEBF是平行四边形.

如图,点D是△ABC的边AB上一点,点E为AC的中点,过点C作CF∥AB交DE延长线于点F.
(1)求证:AD=CF.
(2)连接AF,CD,求证:四边形ADCF为平行四边形.
(1)求证:AD=CF.
(2)连接AF,CD,求证:四边形ADCF为平行四边形.
