- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 根据已知条件判断是否构成平行四边形
- 添一个条件使四边形成为平行四边形
- 数图形中平行四边形的个数
- 求与已知三点组成平行四边形的点的个数
- + 证明四边形是平行四边形
- 全等三角形拼平行四边形问题
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
八年级6班的一个互助学习小组组长收集并整理了组员们讨论如下问题时所需的条件:如图所示,在四边形ABCD中,点E、F分别在边BC、AD上,____,求证:四边形AECF是平行四边形. 你能在横线上填上最少且简捷的条件使结论成立吗?
条件分别是:①BE=DF;②∠B=∠D;③BAE=∠DCF;④四边形ABCD是平行四边形.
其中A、B、C、D四位同学所填条件符合题目要求的是( )

条件分别是:①BE=DF;②∠B=∠D;③BAE=∠DCF;④四边形ABCD是平行四边形.
其中A、B、C、D四位同学所填条件符合题目要求的是( )

A.①②③④ | B.①②③ | C.①④ | D.④ |
如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接DE并延长至点F,使EF=DE,连接AF,DC.求证:四边形ADCF是菱形.

已知四边形ABCD的对角线AC与BD交于点O,给出下列四个论断:
①OA=OC,②AB=CD,③∠BAD=∠DCB,④AD∥BC.
请你从中选择两个论断作为条件,以“四边形ABCD为平行四边形”作为结论,完成下列各题:
(1)构造一个真命题,画图并给出证明;
(2)构造一个假命题,举反例加以说明.
①OA=OC,②AB=CD,③∠BAD=∠DCB,④AD∥BC.
请你从中选择两个论断作为条件,以“四边形ABCD为平行四边形”作为结论,完成下列各题:
(1)构造一个真命题,画图并给出证明;
(2)构造一个假命题,举反例加以说明.
如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,过E点作EF∥DC交BC的延长线于点F,连接C

A. (1)求证:四边形CDEF是平行四边形; (2)求EF的长. |
