- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 平行四边形的性质
- + 平行四边形的判定
- 根据已知条件判断是否构成平行四边形
- 添一个条件使四边形成为平行四边形
- 数图形中平行四边形的个数
- 求与已知三点组成平行四边形的点的个数
- 证明四边形是平行四边形
- 全等三角形拼平行四边形问题
- 平行四边形的判定与性质综合
- 三角形中位线
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,点A是直线l外一点,在l上取两点B、C,分别以A、C为圆心,BC、AB长为半径画弧,两弧交于点D,分别连接AB、AD、CD,则四边形ABCD一定是()


A.平行四边形 | B.矩形 | C.菱形 | D.梯形 |
如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=D

A. (1)求证:四边形BFCE是平行四边形; (2)若AD=10,DC=3,∠EBD=60°,则BE=时,四边形BFCE是菱形. |

在下列给出的条件中,不能判定四边形ABCD一定是平行四边形的是( )
A.AB=CD,AD=BC | B.AB//CD,AD=BC | C.AB//CD,AB=CD | D.AB//CD,AD//BC |
在△ABC中,AD⊥BC于点D,点E为AC边的中点,过点A作AF∥BC,交DE的延长线于点F,连接CF.
(1)如图1,求证:四边形ADCF是矩形;
(2)如图2,当AB=AC时,取AB的中点G,连接DG、EG,在不添加任何辅助线和字母的条件下,请直接写出图中所有的平行四边形(不包括矩形ADCF).
(1)如图1,求证:四边形ADCF是矩形;
(2)如图2,当AB=AC时,取AB的中点G,连接DG、EG,在不添加任何辅助线和字母的条件下,请直接写出图中所有的平行四边形(不包括矩形ADCF).

如图,在▱ABCD中,AF是∠BAD的平分线,交BC于点F,与DC的延长线交于点N.CE是∠BCD的平分线,交AD于点E,与BA的延长线交于点M.
(1)试判断四边形AFCE的形状,并说明理由;
(2)若BE⊥ME,证明四边形ABFE是菱形.
(1)试判断四边形AFCE的形状,并说明理由;
(2)若BE⊥ME,证明四边形ABFE是菱形.

不能判定四边形ABCD为平行四边形的题设是( )
A.AB=CD,AB∥CD | B.∠A=∠C,∠B=∠D | C.AB=AD,BC=CD | D.AB=CD,AD=BC |