- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 多边形及其内角和
- + 平行四边形
- 平行四边形的性质
- 平行四边形的判定
- 平行四边形的判定与性质综合
- 三角形中位线
- 特殊的平行四边形
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
在四边形ABCD中,对角线AC、BD交于点O,若AD=12,OD=OB=5,AC=26,∠ADB=90º,求证:四边形ABCD为平行四边形.

如图,在△ABC中,延长BC至D,使得CD=
BC,过AC的中点E作EF∥CD(点F位于点E右侧),且EF=2CD,连接DF,若AB=8,则DF的长为_____ .


如图,平行四边形ABCD中,E是BC边上的一点,且AB=AE,若AE平分∠DAB,∠EAC=20°,则∠AED的度数为( )


A.70° | B.75° | C.80° | D.85° |
下列四个命题是假命题的是



A.平行线间的距离处处相等 |
B.三角形的一个外角等于两个内角的和 |
C.两组对角分别相等的四边形是平行四边形 |
D.一组对边平行且相等的四边形是平行四边形 |
如图,在四边形ABCD中,AC平分∠BAD,∠ABC=90°,AC=AD=2,M、N分别为AC、CD的中点,连接BM、MN、BN.
(1)求证:BM=MA;
(2)若∠BAD=60°,求BN的长;
(3)当∠BAD= °时,BN=1.(直接填空)
(1)求证:BM=MA;
(2)若∠BAD=60°,求BN的长;
(3)当∠BAD= °时,BN=1.(直接填空)

如图,H是△ABC内一点,BH⊥CH,AH=6,CH=3,BH=4,D、E、F、G分别是AB、AC、CH、BH的中点,则四边形DEFG的周长是______ .


如图,在方格网中已知格点△ABC和点O.
(1)画△A′B'C′,使△A′B′C'与△ABC关于点O成中心对称;
(2)请在方格网中标出所有以点A,O,C′,D为顶点的四边形是平行四边形的D点,并画出平行四边形.
(1)画△A′B'C′,使△A′B′C'与△ABC关于点O成中心对称;
(2)请在方格网中标出所有以点A,O,C′,D为顶点的四边形是平行四边形的D点,并画出平行四边形.

如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AB=4,△BCD为等边三角形,点E为△BCD围成的区域(包括各边)内的一点,过点E作EM∥AB,交直线AC于点M,作EN∥AC,交直线AB于点N,则
AN+AM的最大值为_____ .

