- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 用勾股定理解三角形
- 已知两点坐标,用勾股定理求两点距离
- 勾股树(数)问题
- 以直角三角形三边为边长的图形面积
- 勾股定理与网格问题
- 勾股定理与折叠问题
- 利用勾股定理求两条线段的平方和(差)
- 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- 以弦图为背景的计算题
- 用勾股定理构造图形解决问题
- + 勾股定理与无理数
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
阅读下列材料,并回答问题.事实上,在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方,这个结论就是著名的勾股定理.请利用这个结论,完成下面活动:

一个直角三角形的两条直角边分别为
,那么这个直角三角形斜边长为____;
如图①,
于
,求
的长度;
如图②,点
在数轴上表示的数是____请用类似的方法在图2数轴上画出表示数
的
点(保留痕迹).











如图,已知
是腰长为1的等腰三角形,以
的斜边AC为直角边,画第二个等腰三角形RT△ACD,再以
的斜边AD为直角边,画第三个等腰三角形
,
,以此类推,则第2019个等腰三角形的斜边长是______.






设边长为1的正方形的对角线长为
.下列关于
的四种说法:
①
是无理数; ②
可以用数轴上的一个点来表示; ③2<
<3;
④
是2的算术平方根.其中,所有正确说法的序号是( ).


①



④

A.①④ | B.②③ | C.①②④ | D.①③④ |
如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21.动点P从点D出发,沿射线DA的方向以每秒2两个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,点P,Q分别从点D,C同时出发,当点Q运动到点B时,点P随之停止运动.设运动的时间为t(秒).当t为__________ 时,以B,P,Q三点为顶点的三角形是等腰三角形?
