- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 用勾股定理解三角形
- 已知两点坐标,用勾股定理求两点距离
- 勾股树(数)问题
- 以直角三角形三边为边长的图形面积
- 勾股定理与网格问题
- + 勾股定理与折叠问题
- 利用勾股定理求两条线段的平方和(差)
- 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- 以弦图为背景的计算题
- 用勾股定理构造图形解决问题
- 勾股定理与无理数
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,将矩形纸片ABCD沿EF折叠,使A点与C点重合,点D落在点G处,EF为折痕.

(1)求证:△FGC≌△EBC;
(2)若AB=8,AD=4,求四边形ECGF(阴影部分)的面积.

(1)求证:△FGC≌△EBC;
(2)若AB=8,AD=4,求四边形ECGF(阴影部分)的面积.
如图,在平面直角坐标系中,四边形OABC是正方形,B点的坐标为(-2,2),E是线段BC上一点,且∠AEB=60°,沿AE折叠后B点落在点F处,那么点F的坐标是 .

如图,已知在三角形纸片ABC中,BC=3,AB=6,∠BCA=90°,在边AC上取一点E,以BE为折痕,使AB的一部分与BC重合,A与BC延长线上的点
重合,则DE的长度为()



A.6 | B.3 | C.![]() | D.![]() |
如图,
中∠
,两直角边长分别是3、4,直线
分别交直角边
、
于
,将
沿
折叠,点
落在点
处,且点
在
的外部,
、
分别与
相交于点
、
,则
、
、
的周长之和是__________。





















如图,直角三角形纸片ABC中,∠ACB=90°,AC=8,BC=6.折叠该纸片使点B与点C重合,折痕与AB、BC的交点分别为D、E. DE的长为 .

已知△ABC中,AC=BC=8,∠ACB=90°,D是直线AC上一点,CD:AC=1:2,折叠△ABC,使B落在D点上,则折痕长为 .
如图,现有一张边长为4的正方形纸片ABCD,点P为AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,联结BP、BH.

(1)求证:∠APB=∠BPH.
(2)求证:AP+HC=PH.
(3)当AP=1时,求PH的长.

(1)求证:∠APB=∠BPH.
(2)求证:AP+HC=PH.
(3)当AP=1时,求PH的长.