- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 用勾股定理解三角形
- 已知两点坐标,用勾股定理求两点距离
- 勾股树(数)问题
- 以直角三角形三边为边长的图形面积
- 勾股定理与网格问题
- 勾股定理与折叠问题
- 利用勾股定理求两条线段的平方和(差)
- 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- 以弦图为背景的计算题
- 用勾股定理构造图形解决问题
- 勾股定理与无理数
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是( ).


A.12 | B.11 | C.10 | D.9 |
如图,在东西走向的铁路上有A,B两站,在A,B的正北方向分别有C,D两个蔬菜基地,其中C到A站的距离为24千米,D到B站的距离为12千米.在铁路AB上有一个蔬菜加工厂E,蔬菜基地C,D到E的距离相等,且AC=BE,则E站距A站________千米.
