刷题首页
题库
初中数学
题干
如图1,点P,Q分别是等边△ABC边AB,BC上的动点(端点除外),点P从顶点A、点Q从顶点B同时出发,且它们的运动速度相同,连接AQ,CP交于点M.
(1)求证:△ABQ
△CAP;
(2)如图1,当点P,Q分别在AB,BC边上运动时,∠QMC变化吗?若变化,请说明理由;若不变,求出它的度数.
(3)如图2,若点P,Q在分别运动到点B和点C后,继续在射线AB,BC上运动,直线AQ,CP交点为M,则∠QMC=
度.(直接填写度数)
上一题
下一题
0.99难度 解答题 更新时间:2019-12-11 11:55:13
答案(点此获取答案解析)
同类题1
探究:
(1)如图1,在△ABC与△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°,连结BD、CE.请写出图1中所有全等的三角形:
(不添加字母).
(2)如图2,已知△ABC,AB=AC,∠BAC=90°,
是过A点的直线,CN⊥
,BM⊥
,垂足为N、M.求证:△ABM≌△CAN.
解决问题:
(3)如图3,已知△ABC,AB=AC,∠BAC=90°,D在边BC上,DA=DE,∠ADE =90°.
求证:AC⊥CE.
同类题2
如图,要测量河两岸相对两点A、B间的距离,在河岸BM上截取BC=CD,作ED⊥BD交AC的延长线于点E,垂足为点D。(DE≠CD)
(1)线段
的长度就是A、B两点间的距离;
(2)请说明(1)成立的理由.
同类题3
如图,点D,E分别在正△ABC的边AB,BC上,且BD=CE,CD,AE交于点
A.
(1)①求证:△ACE≌△CBD;②求∠AFD的度数;
(2)如图2,若D,E,M,N分别是△ABC各边上的三等分点,BM,CD交于Q.若△ABC的面积为S,请用S表示四边形ANQF的面积
;
(3)如图3,延长CD到点P,使∠BPD=30°,设AF=a,CF=b,请用含a,b的式子表示PC长,并说明理由.
同类题4
问题探究:如图1,在△
ABC
中,点
D
是
BC
的中点,
DE
⊥
DF
,
DE
交
AB
于点
E
,
DF
交
AC
于点
F
,连接
EF
.
①
BE
、
CF
与
EF
之间的关系为:
BE
+
CF
EF
;(填“>”、“=”或“<”)
②若∠
A
=90°,探索线段
BE
、
CF
、
EF
之间的等量关系,并加以证明.
问题解决:如图2,在四边形
ABDC
中,∠
B
+∠
C
=180°,
DB
=
DC
,∠
BDC
=130°,以
D
为顶点作∠
EDF
=65°,∠
EDF
的两边分别交
AB
、
AC
于
E
、
F
两点,连接
EF
,探索线段
BE
、
CF
、
EF
之间的数量关系,并加以证明.
同类题5
已知:如图,AC=CB,DA=DB,AE=2DE,BF=2D
A.
求证:(1)∠A=∠B;(2)CE=C
F
相关知识点
图形的性质
三角形
全等三角形
三角形全等的判定
等边三角形的性质