- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 等腰三角形的性质
- 根据等边对等角求角度
- 根据等边对等角证明
- 根据三线合一求解
- 根据三线合一证明
- 等腰三角形的定义
- 等腰三角形的判定
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,△ABC与△ADE中,∠BAC=∠DAE=90°,AB=AC,BC=8,AD=AE,且点D在BC边上运动(不与点B、C重合),△ADE的面积为S,则S的最小值为( )


A.24 | B.16 | C.8 | D.无法确定 |
如图,△ABC中,AB=AC,D为BC的中点,以下结论:(1)△ABD≌△ACD ;(2)AD⊥BC;(3)∠B=∠C ;(4)AD是△ABC的角平分线。其中正确的有( )。


A.1个 | B.2个 | C.3个 | D.4个 |
在边长为4的等边△ABC中.

(1)如图1,P,Q是BC边上的两点,AP=AQ,∠BAP=18°,求∠AQB的度数;
(2)点P,Q是BC边上的两个动点(不与点B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM.依题意将图2补全,并求证PA=PM.
(3)在(2)中,当AM的值最小时,直接写出CM的长.

(1)如图1,P,Q是BC边上的两点,AP=AQ,∠BAP=18°,求∠AQB的度数;
(2)点P,Q是BC边上的两个动点(不与点B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM.依题意将图2补全,并求证PA=PM.
(3)在(2)中,当AM的值最小时,直接写出CM的长.
玉树地震后,青海省某乡镇中学的同学用下面的方法检测教室的房梁是否水平:如图,在等腰直角三角尺斜边中点栓一条细绳,细绳的另一端挂一个铅锤,把这块三角尺的斜边贴在房梁上,结果绳子经过三角尺的直角顶点,于是同学们确信房梁是水平的,其理由是( )
A.等腰三角形两腰等分 |
B.等腰三角形两底角相等 |
C.三角形具有稳定性 |
D.等腰三角形的底边中线和底边上的高重合 |